Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Periodic continued fractions over $S$-integers in number fields and Skolem’s $p$-adic method

Tom 197 / 2021

Bradley W. Brock, Noam D. Elkies, Bruce W. Jordan Acta Arithmetica 197 (2021), 379-420 MSC: Primary 11J70; Secondary 11G30. DOI: 10.4064/aa191001-7-8 Opublikowany online: 20 November 2020

Streszczenie

We generalize the classical theory of periodic continued fractions (PCFs) over ${\mathbf Z}$ to rings $\mathcal O \subseteq \mathbf C $ of $S$-integers in a number field. If it exists, the limit of a PCF $P=[b_1,\ldots ,b_N,\overline {a_1,\ldots ,a_k}]$ of type $(N,k)$ over $\mathcal O $ satisfies a quadratic polynomial in $\mathcal O [x]$. Let ${\mathcal B}$ be the multi-set of roots of such a polynomial. Using the continuant polynomials of Wallis and Euler we define an affine variety $V:= V({\mathcal B})_{N,k}$ generically of dimension $N+k-2$ whose $\mathcal O $-points $V(\mathcal O )$ are equivalent to such PCFs with potential limits in ${\mathcal B}$. Finding the integral points $V(\mathcal O )$ is related to factoring into elementary matrices in $\text {SL}_2(\mathcal O )$. We give an algorithm to determine if a PCF converges and, if so, to compute its limit.

As an example we generalize the prototypical PCF $\sqrt {2}=[1,\overline {2}]$ to $\alpha _n := 2\cos (2\pi /2^{n+2})$ given recursively by $\alpha _0=0$, $\alpha _{n+1}=\sqrt {2+\alpha _n}$, which lie in the tower of quadratic extensions forming the ${\mathbf Z}_2$-extension of $\mathbf {Q}$: $F_n=\mathbf {Q}(\alpha _n)=\mathbf {Q}(\zeta _{2^{n+2}})^+$ with integers $\mathcal O _n={\mathbf Z}[\alpha _n]$. The problem is to find the PCFs of $\alpha _{n+1}$ over $\mathcal O _{n}$ of type $(N,k)$ by finding the $\mathcal O _{n}$-points on $V({\mathcal B}_{n+1})_{N,k}$ for ${\mathcal B}_{n+1}:= \{\alpha _{n+1}, -\alpha _{n+1}\}$. For the three types $(N,k)=(0,3), (1,2), (2,1)$ where $V({\mathcal B})_{N,k}$ is a curve, Siegel’s theorem implies $V({\mathcal B})_{N,k}(\mathcal O )$ is finite for generic ${\mathcal B}$ and in particular for our ${\mathcal B}_{n+1}$ over $\mathcal O _n$. We find all the $\mathcal O _n$-points on $V({\mathcal B}_{n+1})_{N,k}$ for $n=0,1$ and $N+k\le 3$. When $n=1$ and $N+k=3$, we make extensive use of Skolem’s $p$-adic method for $p=2$, including its application to Ljunggren’s equation $x^2 + 1 =2y^4$.

Autorzy

  • Bradley W. BrockCenter for Communications Research
    805 Bunn Drive
    Princeton, NJ 08540-1966, U.S.A.
    e-mail
  • Noam D. ElkiesMathematics Department
    Harvard University
    1 Oxford Street
    Cambridge, MA 02138-2901, U.S.A.
    e-mail
  • Bruce W. JordanDepartment of Mathematics
    Baruch College
    The City University of New York
    One Bernard Baruch Way
    New York, NY 10010-5526, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek