Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

A Bombieri–Vinogradov-type theorem with prime power moduli

Tom 204 / 2022

Stephan Baier, Sudhir Pujahari Acta Arithmetica 204 (2022), 115-140 MSC: Primary 11J71; Secondary 11K41, 11K60, 11L20, 11L40, 11N05, 11N13, 11N35, 11N36. DOI: 10.4064/aa210709-30-4 Opublikowany online: 23 June 2022


In 2020, Roger Baker proved a result on the exceptional set of moduli in the prime number theorem for arithmetic progressions of the following kind. Let $\mathcal {S}$ be a set of pairwise coprime moduli $q\le x^{9/40}$. Then the primes $l\le x$ distribute as expected in arithmetic progressions mod $q$, except for a subset of $\mathcal {S}$ whose cardinality is bounded by a power of $\log x$. We use a $p$-adic variant of Harman’s sieve to extend Baker’s range to $q\le x^{1/4-\varepsilon }$ if $\mathcal {S}$ is restricted to prime powers $p^N$, where $p\le (\log x)^C$ for some fixed but arbitrary $C \gt 0$. For large enough $C$, we thus get an almost-all result. Previously, an asymptotic estimate for $\pi (x;p^N,a)$ of the expected kind, with $p$ being an odd prime, was established in the wider range $p^N\le x^{3/8-\varepsilon }$ by Barban, Linnik and Chudakov (1964). Gallagher (1972) extended this range to $p^N\le x^{2/5-\varepsilon }$, and Huxley (1975) improved Gallagher’s exponent to $5/12$. A lower bound of the correct order of magnitude was recently established by Banks and Shparlinski (2019) for the even wider range $p^N\le x^{0.4736}$. However, all these results hold for fixed primes $p$, and the $O$-constants in the relevant estimates depend on $p$. Therefore, they do not contain our result. In a part of our article, we describe how our method relates to these results.


  • Stephan BaierRamakrishna Mission Vivekananda Educational Research Institute
    Department of Mathematics
    G. T. Road, PO Belur Math
    Howrah, West Bengal 711202, India
  • Sudhir PujahariSchool of Mathematical Sciences
    National Institute of Science Education and Research Bhubaneswar
    An OCC of Homi Bhabha National Institute
    P.O. Jatni
    Khurda 752050, Odisha, India

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek