JEDNOSTKA NAUKOWA KATEGORII A+

Wydawnictwa / Czasopisma IMPAN / Acta Arithmetica / Wszystkie zeszyty

Acta Arithmetica

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Linear independence criteria for generalized polylogarithms with distinct shifts

Tom 206 / 2022

Acta Arithmetica 206 (2022), 127-169 MSC: Primary 11J72; Secondary 11J82, 11J20, 11J61. DOI: 10.4064/aa220307-18-10 Opublikowany online: 12 December 2022

Streszczenie

For a given rational number $x$ and an integer $s\geq 1$, consider a generalized polylogarithmic function, often called the Lerch function, defined by $$\Phi _{s}(x,z)= \sum _{k=0}^{\infty }\frac{z^{k+1}}{(k+x+1)^s}.$$ We prove the linear independence over any number field $K$ of the numbers $1$ and $\Phi _{s_j}(x_j,\alpha _i)$ with any choice of distinct shifts $x_1,\ldots , x_d$ with $0\le x_1 \lt \cdots \lt x_d \lt 1$, as well as any choice of depths $1\leq s_1\leq r_1,\ldots , 1\leq s_d\leq r_d$, at distinct algebraic numbers $\alpha _1,\ldots ,\alpha _m\in K$ subject to a metric condition. As is usual in the theory, the points $\alpha _i$ need to be chosen sufficiently close to zero with respect to a given fixed place $v_0$ of $K$, Archimedean or finite.

This is the first linear independence result with distinct shifts $x_1, \ldots , x_d$ that allows values at different points for generalized polylogarithmic functions. Previous criteria were only for the functions with one fixed shift or at one point.

Further, we establish another linear independence criterion for values of a generalized polylogarithmic function with cyclic coefficients. Let $q\geq 1$ be an integer and $\boldsymbol{a}=(a_1,\ldots , a_q)\in K^q$ be a $q$-tuple whose coordinates are cyclic with period $q$. Consider the generalized polylogarithmic function with coefficients $$\Phi _{\boldsymbol{a},s}(x,z)=\sum _{k=0}^{\infty }\frac{a_{k+1\bmod q}\cdot z^{k+1}}{(k+x+1)^s}\enspace .$$ Under a suitable condition, we show that the values of these functions are linearly independent over $K$.

Our key tool is a new non-vanishing property for a generalized Wronskian of Hermite type associated to our explicit constructions of Padé approximants for this family of generalized polylogarithmic function.

Autorzy

• Sinnou DavidInstitut de Mathématiques
de Jussieu – Paris Rive Gauche
CNRS UMR 7586
Sorbonne Université
75005 Paris, France
and
CNRS UMI 2000 Relax
and
Chennai Mathematical Institute
Chennai 603103, India
e-mail
• Noriko Hirata-KohnoDepartment of Mathematics
College of Science & Technology
Nihon University
Chiyoda, Tokyo, 101-8308, Japan
e-mail
e-mail
• Makoto KawashimaDepartment of Liberal Arts and Basic Sciences
College of Industrial Engineering
Nihon University
Narashino, Chiba, 275-8575, Japan
e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Odśwież obrazek