JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Small solutions of generic ternary quadratic congruences

Tom 219 / 2025

Stephan Baier, Aishik Chattopadhyay Acta Arithmetica 219 (2025), 331-346 MSC: Primary 11L40; Secondary 11L07, 11K36, 11K41, 11T24 DOI: 10.4064/aa240731-22-4 Opublikowany online: 8 June 2025

Streszczenie

We consider small solutions of quadratic congruences of the form $x_1^2+\alpha _2x_2^2+\alpha _3x_3^2\equiv 0 \bmod{q}$, where $q=p^m$ is an odd prime power. Here, $\alpha _2$ is arbitrary but fixed and $\alpha _3$ is variable, and we assume that $(\alpha _2\alpha _3,q)=1$. We show that for all $\alpha _3$ modulo $q$ which are coprime to $q$ except for a small number of $\alpha _3$’s, an asymptotic formula for the number of solutions $(x_1,x_2,x_3)$ to the congruence $x_1^2+\alpha _2x_2^2+\alpha _3x_3^2\equiv 0 \bmod {q}$ with $\max\,\{|x_1|,|x_2|,|x_3|\}\le N$ holds if $N\ge q^{11/24+\varepsilon }$ as $q$ tends to infinity over the set of all odd prime powers. It is of significance that we break the barrier 1/2 in the above exponent. If $q$ is restricted to powers $p^m$ of a fixed prime $p$ and $m$ tends to infinity, we obtain a slight improvement of this result using the theory of $p$-adic exponent pairs, as developed by Milićević, replacing the exponent $11/24$ above by $11/25$. Under the Lindelöf hypothesis for Dirichlet $L$-functions, we are able to replace the exponent $11/24$ above by $1/3$.

Autorzy

  • Stephan BaierRamakrishna Mission Vivekananda Educational and Research Institute
    Department of Mathematics
    Howrah, West Bengal 711202, India
    e-mail
  • Aishik ChattopadhyayRamakrishna Mission Vivekananda Educational and Research Institute
    Department of Mathematics
    Howrah, West Bengal 711202, India
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek