JEDNOSTKA NAUKOWA KATEGORII A+

$p$-Integrality of canonical coordinates

Daniel Vargas-Montoya Acta Arithmetica MSC: Primary 11E95; Secondary 12H25 DOI: 10.4064/aa240806-11-3 Opublikowany online: 21 July 2025

Streszczenie

Let $L$ be a differential operator with coefficients in $\mathbb {Q}(z)$ of order $n\geq 2$ with maximal unipotent monodromy at zero. We are interested in determining when the canonical coordinate of $L$ belongs to $\mathbb {Z}_p[[z]]$. For this purpose, motivated by a recent conjecture due to P. Candelas, X. de la Ossa and D. van Straten (2021), we study the situation when $L$ has a strong Frobenius structure $\Phi =(\phi _{i,j})_{1\leq i,j\leq n}\in M_n(\mathbb {Z}_p[[z]])$ such that $\phi _{1,1}(0)=1$. We then give a necessary and sufficient condition for the canonical coordinate of $L$ to belong to $\mathbb {Z}_p[[z]]$ when $L$ has such a strong Frobenius structure.

Published in Open Access (under CC-BY license).

Autorzy

  • Daniel Vargas-MontoyaUniversité de Toulouse
    Institut de Mathématiques de Toulouse
    Toulouse, France
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek