JEDNOSTKA NAUKOWA KATEGORII A+

On the quartic surface $x^4+y^4=z^4+w^4$

Andrew Bremner Acta Arithmetica MSC: Primary 11D25; Secondary 11G05, 14G05, 14G25 DOI: 10.4064/aa240731-23-7 Opublikowany online: 10 September 2025

Streszczenie

Swinnerton-Dyer (1969) states a remarkable theorem that describes all curves of arithmetic genus 0 (hence parametrizable) on the quartic surface of the title; but apparently he never published or gave any details of the proof. Here, we flesh out his skeleton, and in consequence can now give an explicit description of all such parametrizations of degree up to any preassigned bound. In particular, it turns out there are 86 distinct such (non-trivial) parametrizations of degree less than 50.

Autorzy

  • Andrew BremnerSchool of Mathematics and Mathematical Statistics
    Arizona State University
    Tempe, AZ 85287-1804, USA
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek