JEDNOSTKA NAUKOWA KATEGORII A+

Torsion of rational elliptic curves over the cyclotomic extensions of $\mathbb Q$

Ömer Avcı Acta Arithmetica MSC: Primary 11G05; Secondary 14H52 DOI: 10.4064/aa250225-3-8 Opublikowany online: 13 December 2025

Streszczenie

Let $E$ be an elliptic curve defined over $\mathbb Q$. We classify all groups that can arise as $E(\mathbb Q(\zeta _p))_{\mathrm{tors}}$ up to isomorphism for any prime $p$. When $p - 1$ is not divisible by small integers such as $3, 4, 5, 7$, or $11$, we obtain a sharper classification. For any abelian number field $K$, the torsion subgroup $E(K)_{\mathrm{tors}}$ is a subgroup of $E(\mathbb Q^{\mathrm{ab}})_{\mathrm{tors}}$. Our methods provide tools to eliminate non-realized torsion structures from the list of possibilities for $E(K)_{\mathrm{tors}}$.

Autorzy

  • Ömer AvcıDepartment of Mathematics and Statistics
    University of Ottawa
    Ottawa, Ontario, Canada
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek