Galois coverings and splitting properties of the ideal generated by halflines

Tom 101 / 2004

Piotr Dowbor Colloquium Mathematicum 101 (2004), 237-257 MSC: Primary 16G60, 16G20. DOI: 10.4064/cm101-2-7

Streszczenie

Given a locally bounded $k$-category $R$ and a group $G\subseteq \mathop {\rm Aut}\nolimits _{k}(R)$ acting freely on $R$ we study the properties of the ideal generated by a class of indecomposable locally finite-dimensional modules called halflines (Theorem 3.3). They are applied to prove that under certain circumstances the Galois covering reduction to stabilizers, for the Galois covering $F:R\to R/G$, is strictly full (Theorems 1.5 and 4.2).

Autorzy

  • Piotr DowborFaculty of Mathematics and Computer Science
    Nicolaus Copernicus University
    Chopina 12/18
    87-100 Toruń, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek