Pseudo-Bochner-flat locally conformal Kähler submanifolds

Tom 108 / 2007

Koji Matsuo Colloquium Mathematicum 108 (2007), 305-315 MSC: 53C55, 53C40. DOI: 10.4064/cm108-2-12

Streszczenie

Let $\widetilde M$ be an $(m+r)$-dimensional locally conformal Kähler (l.c.K.) manifold and let $M$ be an $m$-dimensional l.c.K. submanifold of $\widetilde M$ (i.e., a complex submanifold with the induced l.c.K. structure). Assume that both $\widetilde M$ and $M$ are pseudo-Bochner-flat. We prove that if $r < m$, then $M$ is totally geodesic (in the Hermitian sense) in $\widetilde M$. This is the l.c.K. version of Iwatani's result for Bochner-flat Kähler submanifolds.

Autorzy

  • Koji MatsuoDepartment of Mathematics
    Ichinoseki National College of Technology
    Ichinoseki 021-8511, Japan
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek