Two commuting maps without common minimal points

Tom 123 / 2011

Tomasz Downarowicz Colloquium Mathematicum 123 (2011), 205-209 MSC: 37B20, 37B05. DOI: 10.4064/cm123-2-4


We construct an example of two commuting homeomorphisms $S$, $T$ of a compact metric space $X$ such that the union of all minimal sets for $S$ is disjoint from the union of all minimal sets for $T$. In other words, there are no common minimal points. This answers negatively a question posed in [C-L]. We remark that Furstenberg proved the existence of “doubly recurrent” points (see [F]). Not only are these points recurrent under both $S$ and $T$, but they recur along the same sequence of powers. Our example shows that nothing similar holds if recurrence is replaced by the stronger notion of uniform recurrence.


  • Tomasz DownarowiczInstitute of Mathematics and Computer Science
    Wrocław University of Technology
    Wybrzeże Wyspiańskiego 27
    50-370 Wrocław, Poland

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek