On the Hausdorff–Young theorem for commutative hypergroups

Tom 131 / 2013

Sina Degenfeld-Schonburg Colloquium Mathematicum 131 (2013), 219-231 MSC: Primary 43A32, 43A62; Secondary 43A15. DOI: 10.4064/cm131-2-5


We study the Hausdorff–Young transform for a commutative hypergroup $K$ and its dual space $\hat{K}$ by extending the domain of the Fourier transform so as to encompass all functions in $L^p(K,m)$ and $L^p(\hat{K},\pi)$ respectively, where $1\leq p \leq 2$. Our main theorem is that those extended transforms are inverse to each other. In contrast to the group case, this is not obvious, since the dual space $\hat{K}$ is in general not a hypergroup itself.


  • Sina Degenfeld-SchonburgDepartment of Mathematics
    Munich University of Technology
    85748 Garching, Germany

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek