The almost Daugavet property and translation-invariant subspaces
Tom 134 / 2014
                    
                    
                        Colloquium Mathematicum 134 (2014), 151-163                    
                                        
                        MSC: Primary 46B04; Secondary 43A46.                    
                                        
                        DOI: 10.4064/cm134-2-1                    
                                    
                                                Streszczenie
Let $G$ be a metrizable, compact abelian group and let $\varLambda$ be a subset of its dual group $\widehat G$. We show that $C_\varLambda(G)$ has the almost Daugavet property if and only if $\varLambda$ is an infinite set, and that $L^1_\varLambda(G)$ has the almost Daugavet property if and only if $\varLambda$ is not a $\varLambda(1)$ set.
 
             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                         
                                                            