Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

The reaping and splitting numbers of nice ideals

Tom 134 / 2014

Rafał Filipów Colloquium Mathematicum 134 (2014), 179-192 MSC: Primary 03E17, 40A35; Secondary 03E50, 40A30, 03E75. DOI: 10.4064/cm134-2-3

Streszczenie

We examine the splitting number $\mathfrak {s}(\mathbf {B})$ and the reaping number $\mathfrak {r}(\mathbf {{B}})$ of quotient Boolean algebras $\mathbf {B}=\mathcal {P}(\omega )/\mathcal {I}$ where $\mathcal {I}$ is an $F_\sigma $ ideal or an analytic P-ideal. For instance we prove that under Martin's Axiom $\mathfrak {s}(\mathcal {P}(\omega )/\mathcal {I})=\mathfrak {c}$ for all $F_\sigma $ ideals $\mathcal {I}$ and for all analytic P-ideals $\mathcal {I}$ with the $\textrm {BW}$ property (and one cannot drop the $\textrm {BW}$ assumption). On the other hand under Martin's Axiom $\mathfrak {r}(\mathcal {P}(\omega )/\mathcal {I})=\mathfrak {c}$ for all $F_\sigma $ ideals and all analytic P-ideals $\mathcal {I}$ (in this case we do not need the $\textrm {BW}$ property). We also provide applications of these characteristics to the ideal convergence of sequences of real-valued functions defined on the reals.

Autorzy

  • Rafał FilipówInstitute of Mathematics
    University of Gdańsk
    Wita Stwosza 57
    80-952 Gdańsk, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek