Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Relationships between generalized Heisenberg algebras and the classical Heisenberg algebra

Tom 134 / 2014

Marc Fabbri, Frank Okoh Colloquium Mathematicum 134 (2014), 255-265 MSC: Primary 17B65; Secondary 17B69. DOI: 10.4064/cm134-2-9

Streszczenie

A Lie algebra is called a generalized Heisenberg algebra of degree $n$ if its centre coincides with its derived algebra and is $n$-dimensional. In this paper we define for each positive integer $n$ a generalized Heisenberg algebra $\mathcal {H}_{n}$. We show that $\mathcal {H}_{n}$ and $\mathcal {H}_{1}^{n}$, the Lie algebra which is the direct product of $n$ copies of $\mathcal {H}_{1}$, contain isomorphic copies of each other. We show that $\mathcal {H}_{n}$ is an indecomposable Lie algebra. We prove that $\mathcal {H}_{n}$ and $\mathcal {H}_{1}^{n}$ are not quotients of each other when $n \geq 2$, but $\mathcal {H}_{1}$ is a quotient of $\mathcal {H}_{n}$ for each positive integer $n$. These results are used to obtain several families of $\mathcal {H}_{n}$-modules from the Fock space representation of $\mathcal {H}_{1}$. Analogues of Verma modules for $\mathcal {H}_{n}$, $n \geq 2$, are also constructed using the set of rational primes.

Autorzy

  • Marc FabbriDepartment of Mathematics
    Pennsylvania State University
    University Park, PA 16802-6401, U.S.A.
    e-mail
  • Frank OkohDepartment of Mathematics
    Wayne State University
    Detroit, MI 48202-3622, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek