Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Spectral distribution of the free Jacobi process associated with one projection

Tom 137 / 2014

Nizar Demni, Taoufik Hmidi Colloquium Mathematicum 137 (2014), 271-296 MSC: Primary 47B15; Secondary 60B20. DOI: 10.4064/cm137-2-11

Streszczenie

Given an orthogonal projection $P$ and a free unitary Brownian motion $Y = (Y_t)_{t \geq 0}$ in a $W^{\star }$-non commutative probability space such that $Y$ and $P$ are $\star $-free in Voiculescu's sense, we study the spectral distribution $\nu _t$ of $J_t = PY_tPY_t^{\star }P$ in the compressed space. To this end, we focus on the spectral distribution $\mu _t$ of the unitary operator $SY_tSY_t^{\star }$, $S = 2P-1$, whose moments are related to those of $J_t$ via a binomial-type expansion already obtained by Demni et al. [Indiana Univ. Math. J. 61 (2012)]. In this connection, we use free stochastic calculus in order to derive a partial differential equation for the Herglotz transform $\mu _t$. Then, we exhibit a flow $\psi (t, \cdot )$ valued in $[-1,1]$ such that the composition of the Herglotz transform with the flow is governed by both the ones of the initial and the stationary distributions $\mu _0$ and $\mu _{\infty }$. This enables us to compute the weights $\mu _t\{1\}$ and $\mu _t\{-1\}$ which together with the binomial-type expansion lead to $\nu _t\{1\}$ and $\nu _t\{0\}$. Fatou's theorem for harmonic functions in the upper half-plane shows that the absolutely continuous part of $\nu _t$ is related to the nontangential extension of the Herglotz transform of $\mu _t$ to the unit circle. In the last part of the paper, we use combinatorics of noncrossing partitions in order to analyze the term corresponding to the exponential decay $e^{-nt}$ in the expansion of the $n$th moment of $\mu _t$.

Autorzy

  • Nizar DemniIRMAR, Université de Rennes 1
    Campus de Beaulieu
    35042 Rennes Cedex, France
    e-mail
  • Taoufik HmidiIRMAR, Université de Rennes 1
    Campus de Beaulieu
    35042 Rennes Cedex, France
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek