Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Incidence coalgebras of interval finite posets of tame comodule type

Tom 141 / 2015

Zbigniew Leszczyński, Daniel Simson Colloquium Mathematicum 141 (2015), 261-295 MSC: 16G20, 16G60, 16W30, 16W80. DOI: 10.4064/cm141-2-10

Streszczenie

The incidence coalgebras $ K^{\Box} I$ of interval finite posets $I$ and their comodules are studied by means of the reduced Euler integral quadratic form $q^\bullet :\mathbb Z^{(I)}\to \mathbb Z$, where $K$ is an algebraically closed field. It is shown that for any such coalgebra the tameness of the category $K^{\Box} I\mbox{-}{\rm comod}$ of finite-dimensional left $ K^{\Box} I$-modules is equivalent to the tameness of the category $K^{\Box} I{\mbox{-}{\rm Comod}_{{\rm fc}}}$ of finitely copresented left $ K^{\Box} I$-modules. Hence, the tame-wild dichotomy for the coalgebras $K^{\Box} I$ is deduced. Moreover, we prove that for an interval finite $\widetilde {\mathbb A}^*_m$-free poset $I$ the incidence coalgebra $K^{\Box} I$ is of tame comodule type if and only if the quadratic form $q^\bullet $ is weakly non-negative. Finally, we give a complete list of all infinite connected interval finite $\widetilde {\mathbb A}^*_m$-free posets $I$ such that $K^{\Box} I$ is of tame comodule type. In this case we prove that, for any pair of finite-dimensional left $K^{\Box} I$-comodules $M$ and $N$, $ \overline b_{K^{\Box} I} (\operatorname{\bf dim} M,\operatorname{\bf dim} N) = \sum _{j=0}^{\infty}(-1)^j\dim_K \operatorname{Ext}_{K^{\Box} I}^j(M,N) $, where $ \overline b_{K^{\Box} I}:\mathbb Z^{(I)}\times \mathbb Z^{(I)}\to \mathbb Z $ is the Euler $\mathbb Z$-bilinear form of $I$ and $\operatorname{\bf dim} M$, $\operatorname{\bf dim} N$ are the dimension vectors of $M$ and $N$.

Autorzy

  • Zbigniew LeszczyńskiFaculty of Mathematics and Computer Science
    Nicolaus Copernicus University
    Chopina 12/18
    87-100 Toruń, Poland
    e-mail
  • Daniel SimsonFaculty of Mathematics and Computer Science
    Nicolaus Copernicus University
    Chopina 12/18
    87-100 Toruń, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek