# Wydawnictwa / Czasopisma IMPAN / Colloquium Mathematicum / Wszystkie zeszyty

## Colloquium Mathematicum

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

## On some universal sums of generalized polygonal numbers

### Tom 145 / 2016

Colloquium Mathematicum 145 (2016), 149-155 MSC: Primary 11E25; Secondary 11B75, 11D85, 11E20, 11P32. DOI: 10.4064/cm6742-3-2016 Opublikowany online: 6 June 2016

#### Streszczenie

For $m=3,4,\ldots$ those $p_m(x)=(m-2)x(x-1)/2+x$ with $x\in {\mathbb Z}$ are called generalized $m$-gonal numbers. Sun (2015) studied for what values of positive integers $a,b,c$ the sum $ap_5+bp_5+cp_5$ is universal over $\mathbb Z$ (i.e., any $n\in {\mathbb N}=\{0,1,2,\ldots \}$ has the form $ap_5(x)+bp_5(y)+cp_5(z)$ with $x,y,z\in {\mathbb Z}$). We prove that $p_5+bp_5+3p_5$ $(b=1,2,3,4,9)$ and $p_5+2p_5+6p_5$ are universal over $\mathbb Z$, as conjectured by Sun. Sun also conjectured that any $n\in {\mathbb N}$ can be written as $p_3(x)+p_5(y)+p_{11}(z)$ and $3p_3(x)+p_5(y)+p_7(z)$ with $x,y,z\in {\mathbb N}$; in contrast, we show that $p_3+p_5+p_{11}$ and $3p_3+p_5+p_7$ are universal over $\mathbb Z$. Our proofs are essentially elementary and hence suitable for general readers.

#### Autorzy

• Fan GeDepartment of Mathematics
University of Rochester
Rochester, NY 14627, U.S.A.
e-mail
• Zhi-Wei SunDepartment of Mathematics
Nanjing University
Nanjing 210093, People’s Republic of China
e-mail

## Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

## Przepisz kod z obrazka Odśwież obrazek