Multipliers of the Hardy space $H^1$ and power bounded operators

Tom 88 / 2001

Gilles Pisier Colloquium Mathematicum 88 (2001), 57-73 MSC: 42B15, 47D03. DOI: 10.4064/cm88-1-6

Streszczenie

We study the space of functions $\varphi :{\mathbb N}\to {\mathbb C}$ such that there is a Hilbert space $H$, a power bounded operator $T$ in $B(H)$ and vectors $\xi ,\eta $ in $H$ such that $\varphi (n) = \langle T^n\xi ,\eta \rangle .$ This implies that the matrix $(\varphi (i+j))_{i,j\ge 0}$ is a Schur multiplier of $B(\ell _2)$ or equivalently is in the space $(\ell _1 \mathrel {\breve {\otimes }} \ell _1)^*$. We show that the converse does not hold, which answers a question raised by Peller [Pe]. Our approach makes use of a new class of Fourier multipliers of $H^1$ which we call “shift-bounded”. We show that there is a $\varphi $ which is a “completely bounded” multiplier of $H^1$, or equivalently for which $(\varphi (i+j))_{i,j\ge 0}$ is a bounded Schur multiplier of $B(\ell _2)$, but which is not shift-bounded on $H^1$. We also give a characterization of “completely shift-bounded” multipliers on $H^1$.

Autorzy

  • Gilles PisierTexas A&M University
    College Station, TX 77843, U.S.A.
    and
    Equipe d'Analyse
    Université Paris VI
    Case 186
    75252 Paris Cedex 05, France
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek