Endomorphism rings of regular modules over wild hereditary algebras
Tom 97 / 2003
Colloquium Mathematicum 97 (2003), 207-220
MSC: 16G20, 16G60, 16G70.
DOI: 10.4064/cm97-2-7
Streszczenie
Let $H$ be a connected wild hereditary path algebra. We prove that if $Z$ is a quasi-simple regular brick, and $[r]Z$ indecomposable regular of quasi-length $r$ and with quasi-top $Z$, then $\mathop {\rm rad}\nolimits ^r\mathop {{\rm End}_H}\nolimits ([r]Z) =0$.