Opérations de Hausdorff itérées et réunions croissantes de compacts

Tom 141 / 1992

Sylvain Kahane Fundamenta Mathematicae 141 (1992), 169-194 DOI: 10.4064/fm-141-2-169-194

Streszczenie

In this paper, motivated by questions in Harmonic Analysis, we study the operation of (countable) increasing union, and show it is not idempotent: $ω_1$ iterations are needed in general to obtain the closure of a class under this operation. Increasing union is a particular Hausdorff operation, and we present the combinatorial tools which allow to study the power of various Hausdorff operations, and of their iterates. Besides countable increasing union, we study in detail a related Hausdorff operation, which preserves compactness.

Autorzy

  • Sylvain KahaneEquipe d’Analyse
    Université Paris 6
    4, Place Jussieu
    75252 Paris Cedex 05, France

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek