Approximable dimension and acyclic resolutions

Tom 152 / 1997

, Fundamenta Mathematicae 152 (1997), 43-53 DOI: 10.4064/fm-152-1-43-53

Streszczenie

We establish the following characterization of the approximable dimension of the metric space X with respect to the commutative ring R with identity: $a-dim_R$ X ≤ n if and only if there exist a metric space Z of dimension at most n and a proper $UV^{n-1}$-mapping f:Z → X such that $\check H^n(f^-1}(x);R) = 0 $ for all x ∈ X. As an application we obtain some fundamental results about the approximable dimension of metric spaces with respect to a commutative ring with identity, such as the subset theorem and the existence of a universal space. We also show that approximable dimension (with arbitrary coefficient group) is preserved under refinable mappings.

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek