Incomparable, non-isomorphic and minimal Banach spaces

Tom 183 / 2004

Christian Rosendal Fundamenta Mathematicae 183 (2004), 253-274 MSC: Primary 46B03; Secondary 03E15. DOI: 10.4064/fm183-3-5


A Banach space contains either a minimal subspace or a continuum of incomparable subspaces. General structure results for analytic equivalence relations are applied in the context of Banach spaces to show that if $E_0$ does not reduce to isomorphism of the subspaces of a space, in particular, if the subspaces of the space admit a classification up to isomorphism by real numbers, then any subspace with an unconditional basis is isomorphic to its square and hyperplanes, and the unconditional basis has an isomorphically homogeneous subsequence.


  • Christian RosendalMathematics 253-37
    California Institute of Technology
    Pasadena, CA 91125, U.S.A.

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek