The Morse minimal system is finitarily Kakutani equivalent to the binary odometer

Tom 198 / 2008

Mrinal Kanti Roychowdhury, Daniel J. Rudolph Fundamenta Mathematicae 198 (2008), 149-163 MSC: 28D05, 37A20. DOI: 10.4064/fm198-2-5

Streszczenie

Two invertible dynamical systems $(X, {\mathfrak F} {A}, \mu, T)$ and $(Y, {\mathfrak F} {B}, \nu, S)$, where $X$ and $Y$ are Polish spaces and Borel probability spaces and $T$, $S$ are measure preserving homeomorphisms of $X$ and $Y$, are said to be finitarily orbit equivalent if there exists an invertible measure preserving mapping $\phi$ from a subset $X_0$ of $X$ of measure one onto a subset $Y_0$ of $Y$ of full measure such that

(1) $\phi|_{X_0}$ is continuous in the relative topology on $X_0$ and $\phi^{-1}|_{Y_0}$ is continuous in the relative topology on $Y_0$,

(2) $\phi({\rm Orb}_T(x))={\rm Orb}_S(\phi(x))$ for $\mu$-a.e. $x\in X$.

$(X, {\mathfrak F} {A}, \mu, T)$ and $(Y, {\mathfrak F} {B}, \nu, S)$ are said to be finitarily evenly Kakutani equivalent if they are finitarily orbit equivalent by a mapping $\phi$ for which there are measurable subsets $A$ of $X$ and $B=\phi(A)$ of $Y$ with $\phi$ an isomorphism of $T_A$ and $T_B$.

It is shown here that the Morse minimal system and the binary odometer are finitarily evenly Kakutani equivalent.

Autorzy

  • Mrinal Kanti RoychowdhuryDepartment of Mathematics
    University of North Texas
    Denton, TX 76203, U.S.A.
    e-mail
  • Daniel J. RudolphDepartment of Mathematics
    Colorado State University
    Fort Collins, CO 80523, U.S.A.
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek