Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po pospisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2008 są ogólnodostępne (bezpłatnie).

The weak extension property and finite axiomatizability for quasivarieties

Tom 202 / 2009

Wies/law Dziobiak, Miklós Maróti, Ralph McKenzie, Anvar Nurakunov Fundamenta Mathematicae 202(2009), 199-223 MSC: 08A99, 08B10, 03C05, 08C15. DOI: 10.4064/fm202-3-1

Streszczenie

We define and compare a selection of congruence properties of quasivarieties, including the relative congruence meet semi-distributivity, ${\rm RSD}(\wedge)$, and the weak extension property, ${\rm WEP}$. We prove that if ${{{\cal K}}}\subseteq {{{\cal L}}}\subseteq {{{\cal L}}}'$ are quasivarieties of finite signature, and ${{{\cal L}}}'$ is finitely generated while ${{{\cal K}}}\models {\rm WEP}$, then ${{{\cal K}}}$ is finitely axiomatizable relative to ${{{\cal L}}}$. We prove for any quasivariety ${{{\cal K}}}$ that ${{{\cal K}}}\models {\rm RSD}(\wedge)$ iff ${{{\cal K}}}$ has pseudo-complemented congruence lattices and ${{{\cal K}}}\models {\rm WEP}$. Applying these results and other results proved by M.~Maróti and R.~McKenzie [Studia Logica 78 (2004)] we prove that a finitely generated quasivariety ${{{\cal L}}}$ of finite signature is finitely axiomatizable provided that ${{{\cal L}}}$ satisfies ${\rm RSD}(\wedge)$, or that ${{{\cal L}}}$ is relatively congruence modular and is included in a residually small congruence modular variety. This yields as a corollary the full version of R. Willard's theorem for quasivarieties and partially proves a conjecture of D. Pigozzi. Finally, we provide a quasi-Maltsev type characterization for ${\rm RSD}(\wedge)$ quasivarieties and supply an algorithm for recognizing when the quasivariety generated by a finite set of finite algebras satisfies ${\rm RSD}(\wedge)$.

Autorzy

  • Wies/law DziobiakDepartment of Mathematics
    University of Puerto Rico
    Mayagüez Campus
    Mayagüez, PR 00681-9018, U.S.A.
    e-mail
  • Miklós MarótiBolyai Institute
    University of Szeged
    H-6720 Szeged, Hungary
    e-mail
  • Ralph McKenzieDepartment of Mathematics
    Vanderbilt University
    Nashville, TN 37235, U.S.A.
    e-mail
  • Anvar NurakunovInstitute of Mathematics
    National Academy of Science
    Chui pr., 265a
    Bishkek, 720071, Kyrghyz Republic
    e-mail

Przeszukaj wydawnictwa

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek