Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Measures and slaloms

Tom 239 / 2017

Piotr Borodulin-Nadzieja, Tanmay Inamdar Fundamenta Mathematicae 239 (2017), 149-176 MSC: 03E35, 03E17, 03E75, 28A60. DOI: 10.4064/fm318-10-2016 Opublikowany online: 3 April 2017

Streszczenie

We examine measure-theoretic properties of spaces constructed using the technique of Todorčević (2000). We show that the existence of strictly positive measures on such spaces depends on combinatorial properties of certain families of slaloms. As a corollary, if $\mathrm {add}(\mathcal {N}) = \mathrm {non}(\mathcal {M})$, then there is a non-separable space which supports a measure and which cannot be mapped continuously onto $[0,1]^{\omega _1}$. Also, without any additional axioms we prove that there is a non-separable growth of $\omega $ supporting a measure and that there is a compactification $L$ of $\omega $ such that its remainder $L\setminus \omega $ is non-separable and the natural copy of $c_0$ is complemented in $C(L)$. Finally, we discuss examples of spaces not supporting measures but satisfying quite strong chain conditions. Our main tool is a characterization due to Kamburelis (1989) of Boolean algebras supporting measures in terms of their chain conditions in generic extensions by a measure algebra.

Autorzy

  • Piotr Borodulin-NadziejaInstytut Matematyczny
    Uniwersytet Wrocławski
    50-384 Wrocław, Poland
    e-mail
  • Tanmay InamdarSchool of Mathematics
    University of East Anglia
    Norwich, NR4 7TJ, UK
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek