Symmetric Lie models of a triangle
                                                                                
                                                    
                    
                        Urtzi Buijs, Yves Félix, Aniceto Murillo, Daniel Tanré                    
                    
                        Fundamenta Mathematicae 246 (2019), 289-300                    
                                        
                        MSC: Primary 55P62; Secondary 17B01, 55U10.                    
                                        
                        DOI: 10.4064/fm518-7-2018                    
                                            
                            Opublikowany online: 15 February 2019                        
                                    
                                                
                    Streszczenie
                    R. Lawrence and D. Sullivan have constructed a Lie model for an interval from the geometrical idea of flat connections and flows of gauge transformations. Their model supports an action of the symmetric group $\varSigma _2$ reflecting the geometrical symmetry of the interval. In this work, we present a Lie model of the triangle with an action of the symmetric group $\varSigma _3$ compatible with the geometrical symmetries of the triangle. We also prove that the model of a graph consisting of a circuit with $k$ vertices admits a Maurer–Cartan element stable by the automorphisms of the graph.
                 
                                                
                    Autorzy
                    
                                                    - Urtzi BuijsDepartamento de Álgebra, Geometría y Topología
Universidad de Málaga
Ap. 59
29080 Málaga, Spain
                                                                                                                                                                e-mail
                                                                            
                             
                                                    - Yves FélixInstitut de Mathématiques et Physique
Université Catholique de Louvain-la-Neuve
Louvain-la-Neuve, Belgium
                                                                                                                                                                e-mail
                                                                            
                             
                                                    - Aniceto MurilloDepartamento de Álgebra, Geometría y Topología
Universidad de Málaga
Ap. 59, 29080-Málaga, Spain
                                                                                                                                                                e-mail
                                                                            
                             
                                                    - Daniel TanréDépartement de Mathématiques, UMR 8524
Université de Lille 1
59655 Villeneuve d’Ascq Cedex, France
                                                                                                                                                                e-mail