Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Enriched categories of correspondences and characteristic classes of singular varieties

Tom 253 / 2021

Shoji Yokura Fundamenta Mathematicae 253 (2021), 17-60 MSC: Primary 14C17, 14C40, 18D20, 55N22; Secondary 14F99, 19E99, 55N99. DOI: 10.4064/fm761-1-2020 Opublikowany online: 10 September 2020

Streszczenie

For the category $\mathscr V$ of complex algebraic varieties, the Grothendieck group of the commutative monoid of the isomorphism classes of correspondences $X \xleftarrow f M \xrightarrow g Y$ with a proper morphism $f$ and a smooth morphism $g$ (such a correspondence is called a proper-smooth correspondence) gives rise to an enriched category $\mathscr C\!{\mathit orr}(\mathscr V)^+_{\mathit{pro}\hbox{-}\mathit{sm}}$ of proper-smooth correspondences. In this paper we extend the well-known theories of characteristic classes of singular varieties such as Baum–Fulton–MacPherson’s Riemann–Roch transformation (abbr. BFM–RR), MacPherson’s Chern class transformation etc. to this enriched category. In order to deal with local complete intersection ($\ell .c.i.$) morphisms instead of smooth morphisms, in a similar manner we consider an enriched category $\mathscr Z\!\mathit {igzag}(\mathscr V)^+_{\mathit {pro}\hbox {-}\ell .c.i.}$ of proper-$\ell .c.i.$ zigzags and extend BFM–RR to this category. We also consider an enriched category $\mathscr M_{*,*}(\mathscr V)^+_{\otimes }$ of proper-smooth correspondences $(X \xleftarrow f M \xrightarrow g Y; E)$ equipped with a complex vector bundle $E$ on $M$ (such a correspondence is called a cobordism bicycle of a vector bundle) and we extend BFM–RR to this enriched category as well.

Autorzy

  • Shoji YokuraGraduate School of Science and Engineering
    Kagoshima University
    21-35 Korimoto 1-chome
    Kagoshima 890-0065, Japan
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek