JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Mazurkiewicz sets and containment of Sierpiński–Zygmund functions under rotations

Tom 271 / 2025

Cheng-Han Pan Fundamenta Mathematicae 271 (2025), 255-272 MSC: Primary 03E75; Secondary 03E35, 26A15 DOI: 10.4064/fm241027-27-6 Opublikowany online: 24 November 2025

Streszczenie

A Mazurkiewicz set is a plane subset that intersects every straight line at exactly two points, and a Sierpiński–Zygmund function is a function from $\mathbb R$ into $\mathbb R$ that has as little of the standard continuity as possible. Building on the recent work of Kharazishvili, we construct a Mazurkiewicz set that contains a Sierpiński–Zygmund function in every direction and another one that contains none in any direction. Furthermore, we show that whether a Mazurkiewicz set can be expressed as a union of two Sierpiński–Zygmund functions is independent of Zermelo–Fraenkel set theory with the Axiom of Choice (ZFC). Some open problems related to the containment of Hamel functions are stated.

Autorzy

  • Cheng-Han PanDepartment of Mathematics and Statistics
    Mount Holyoke College
    South Hadley, MA 01075-1461, USA
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek