JEDNOSTKA NAUKOWA KATEGORII A+

Naturality and definability III

Mohsen Asgharzadeh, Mohammad Golshani, Saharon Shelah Fundamenta Mathematicae MSC: Primary 08A35; Secondary 03E35, 18A15 DOI: 10.4064/fm240814-29-3 Opublikowany online: 3 October 2025

Streszczenie

We explore the relationship between the notions of naturality from category theory and definability from model theory. We study their interactions and present three main results. First, we show that under some mild conditions, naturality implies definability. Second, using reverse Easton iteration of Cohen forcing notions, we construct a transitive model of ZFC in which every uniformisable construction is weakly natural. Finally, we demonstrate that if $F$ is a natural construction on a class $\mathcal K$ of structures, represented by some formula, then it is uniformly definable without the need for extra parameters. Our results resolve some questions posed by Hodges and Shelah.

Autorzy

  • Mohsen AsgharzadehHakimiyeh, Tehran, Iran
    e-mail
  • Mohammad GolshaniSchool of Mathematics
    Institute for Research
    in Fundamental Sciences (IPM)
    Tehran, Iran
    e-mail
  • Saharon ShelahEinstein Institute of Mathematics
    The Hebrew University of Jerusalem
    Jerusalem, 91904, Israel
    and
    Department of Mathematics
    Rutgers, The State University of New Jersey
    Piscataway, NJ 08854-8019, USA
    http://shelah.logic.at
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek