JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Products of C$^*$-algebras that do not embed into the Calkin algebra

Tom 271 / 2025

Damian Głodkowski, Piotr Koszmider Fundamenta Mathematicae 271 (2025), 273-292 MSC: Primary 03E35; Secondary 46L05, 03E75 DOI: 10.4064/fm250516-22-9 Opublikowany online: 11 November 2025

Streszczenie

We consider the Calkin algebra $\mathcal Q(\ell _2)$, i.e., the quotient of the algebra $\mathcal B(\ell _2)$ of all bounded linear operators on the separable Hilbert space $\ell _2$ divided by the ideal $\mathcal K(\ell _2)$ of all compact operators on $\ell _2$. We show that in the Cohen model of set theory $\mathsf{ZFC}$ there is no embedding of the product $(c_0(2^\omega ))^{\mathbb N}$ of infinitely many copies of the abelian ${\rm C}^*$-algebra $c_0(2^\omega )$ into $\mathcal Q(\ell _2)$ (while $c_0(2^\omega )$ always embeds into $\mathcal Q(\ell _2)$). This enlarges the collection of the known examples due to Vaccaro and to McKenney and Vignati of abelian algebras, asymptotic sequence algebras, reduced products and coronas of stabilizations which consistently do not embed into the Calkin algebra. As in the Cohen model the rigidity of quotient structures fails in general, our methods do not rely on these rigidity phenomena as is the case of most examples mentioned above. The results should be considered in the context of the result of Farah, Hirshberg and Vignati which says that consistently all ${\rm C}^*$-algebras of density up to $2^\omega $ do embed into $\mathcal Q(\ell _2)$. In particular, the algebra $(c_0(2^\omega ))^{\mathbb N}$ consistently embeds into the Calkin algebra as well.

Autorzy

  • Damian GłodkowskiInstitute of Mathematics
    University of Warsaw
    02-097 Warszawa, Poland
    e-mail
  • Piotr KoszmiderInstitute of Mathematics
    Polish Academy of Sciences
    00-656 Warszawa, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek