Molecular decompositions and embedding theorems for vector-valued Sobolev spaces with gradient norm

Tom 107 / 1993

A. Pełczyński, Studia Mathematica 107 (1993), 61-100 DOI: 10.4064/sm-107-1-61-100

Streszczenie

Let E be a Banach space. Let $L¹_{(1)}(ℝ^d,E)$ be the Sobolev space of E-valued functions on $ℝ^d$ with the norm $ʃ_{ℝ^d} ∥f∥_E dx + ʃ_{ℝ^d} ∥∇f∥_E dx = ∥f∥₁ + ∥∇f∥₁$. It is proved that if $f ∈ L¹_{(1)}(ℝ^d,E)$ then there exists a sequence $(g_m) ⊂ L_{(1)}¹(ℝ^d,E)$ such that $f = ∑_m g_m$; $∑_m (∥g_m∥₁ + ∥∇g_m ∥₁) < ∞$; and $∥g_m∥_∞^{1/d} ∥g_m∥₁^{(d-1)/d} ≤ b∥∇g_m∥₁$ for m = 1, 2,..., where b is an absolute constant independent of f and E. The result is applied to prove various refinements of the Sobolev type embedding $L_{(1)}¹(ℝ^d,E) ↪ L²(ℝ^d,E)$. In particular, the embedding into Besov spaces $L¹_{(1)} (ℝ^d,E) ↪ B_{p,1}^{θ(p,d)}(ℝ^d,E)$ is proved, where $θ(p,d) = d(p^{-1} + d^{-1} -1)$ for 1 < p ≤ d/(d-1), d=1,2,... The latter embedding in the scalar case is due to Bourgain and Kolyada.

Autorzy

  • A. Pełczyński

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek