Tauberian operators on $L_1(μ)$ spaces

Tom 125 / 1997

Manuel Gonzalez, Studia Mathematica 125 (1997), 289-303 DOI: 10.4064/sm-125-3-289-303


We characterize tauberian operators $T:L_1(μ) → Y$ in terms of the images of disjoint sequences and in terms of the image of the dyadic tree in $L_1[0,1]$. As applications, we show that the class of tauberian operators is stable under small norm perturbations and that its perturbation class coincides with the class of all weakly precompact operators. Moreover, we prove that the second conjugate of a tauberian operator $T:L_1(μ) → Y$ is also tauberian, and the induced operator $T̃: L_1(μ)**/L_1(μ) → Y**/Y$ is an isomorphism into. Also, we show that $L_1(μ)$ embeds isomorphically into the quotient of $L_1(μ)$ by any of its reflexive subspaces.


  • Manuel Gonzalez

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek