JEDNOSTKA NAUKOWA KATEGORII A+

# Wydawnictwa / Czasopisma IMPAN / Studia Mathematica / Wszystkie zeszyty

## First and second order Opial inequalities

### Tom 126 / 1997

Studia Mathematica 126 (1997), 27-50 DOI: 10.4064/sm-126-1-27-50

#### Streszczenie

Let $T_γ f(x) = ʃ_0^x k(x,y)^γ f(y)dy$, where k is a nonnegative kernel increasing in x, decreasing in y, and satisfying a triangle inequality. An nth-order Opial inequality has the form $ʃ_0^∞ (∏_{i=1}^n |T_{γ_i}f(x)|^{q_i}|) |f(x)|^{q_0} w(x)dx ≤ C(ʃ_0^∞ |f(x)|^p v(x)dx)^{(q_0+…+q_n)/p}$. Such inequalities can always be simplified to nth-order reduced inequalities, where the exponent $q_0 = 0$. When n = 1, the reduced inequality is a standard weighted norm inequality, and characterizing the weights is easy. We also find necessary and sufficient conditions on the weights for second-order reduced Opial inequalities to hold.

• Steven Bloom

## Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Odśwież obrazek