Weyl type theorems for $p$-hyponormal and $M$-hyponormal operators

Tom 163 / 2004

Xiaohong Cao, Maozheng Guo, Bin Meng Studia Mathematica 163(2004), 177-188 MSC: 47A10, 47A53, 47A55. DOI: 10.4064/sm163-2-5 Opublikowany online: 1 January 1970

Streszczenie

“Generalized Weyl's theorem holds" for an operator when the complement in the spectrum of the B-Weyl spectrum coincides with the isolated points of the spectrum which are eigenvalues; and “generalized a-Weyl's theorem holds" for an operator when the complement in the approximate point spectrum of the semi-B-essential approximate point spectrum coincides with the isolated points of the approximate point spectrum which are eigenvalues. If $T$ or $T^*$ is $p$-hyponormal or $M$-hyponormal then for every $f\in H(\sigma (T))$, generalized Weyl's theorem holds for $f(T)$, so Weyl's theorem holds for $f(T)$, where $H(\sigma (T))$ denotes the set of all analytic functions on an open neighborhood of $\sigma (T)$. Moreover, if $T^*$ is $p$-hyponormal or $M$-hyponormal then for every $f\in H(\sigma (T))$, generalized a-Weyl's theorem holds for $f(T)$ and hence a-Weyl's theorem holds for $f(T)$.

Autorzy

  • Xiaohong CaoCollege of Mathematics and
    Information Science
    Shaanxi Normal University
    Xi'an, 710062, P.R. China
    e-mail
  • Maozheng GuoLMAM, School of Mathematical Sciences
    Peking University
    Beijing, 100871, P.R. China
  • Bin MengLMAM, School of Mathematical Sciences
    Peking University
    Beijing, 100871, P.R. China

Przeszukaj wydawnictwa

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek