Classes of measures closed under mixing and convolution. Weak stability

Tom 167 / 2005

J. K. Misiewicz, K. Oleszkiewicz, K. Urbanik Studia Mathematica 167 (2005), 195-213 MSC: Primary 60E05. DOI: 10.4064/sm167-3-1

Streszczenie

For a random vector $X$ with a fixed distribution $\mu$ we construct a class of distributions ${\cal M}(\mu)= \{ \mu\circ\lambda: \lambda\in{\cal P}\}$, which is the class of all distributions of random vectors $X {\mit\Theta}$, where $ {\mit\Theta}$ is independent of $X$ and has distribution $\lambda$. The problem is to characterize the distributions $\mu$ for which ${\cal M}(\mu)$ is closed under convolution. This is equivalent to the characterization of the random vectors $X$ such that for all random variables ${\mit\Theta}_1, {\mit\Theta}_2$ independent of $X, X^{\prime}$ there exists a random variable ${\mit\Theta}$ independent of $X$ such that \[ X {\mit\Theta}_1 + X^{\prime}{\mit\Theta}_2 \stackrel{d}{=} X {\mit\Theta}. \] We show that for every $X$ this property is equivalent to the following condition: \[ \forall a,b \in {\mathbb R} \exists {\mit\Theta} \hbox{ independent of } X, \quad aX + b X^{\prime}\stackrel{d}{=} X {\mit\Theta}. \] This condition reminds the characterizing condition for symmetric stable random vectors, except that ${\mit\Theta}$ is here a random variable, instead of a constant. The above problem has a direct connection with the concept of generalized convolutions and with the characterization of the extreme points for the set of pseudo-isotropic distributions.

Autorzy

  • J. K. MisiewiczDepartment of Mathematics, Informatics and Econometry
    University of Zielona Góra
    Podgórna 50
    65-246 Zielona Góra, Poland
    e-mail
  • K. OleszkiewiczInstitute of Mathematics
    Warsaw University
    Banacha 2
    02-097 Warszawa, Poland
    e-mail
  • K. UrbanikInstitute of Mathematics
    University of Wrocław
    Pl. Grunwaldzki 2/4
    50-384 Wrocław, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek