On the approximation by compositions of fixed multivariate functions with univariate functions

Tom 183 / 2007

Vugar E. Ismailov Studia Mathematica 183 (2007), 117-126 MSC: 41A30, 41A50, 41A65. DOI: 10.4064/sm183-2-2

Streszczenie

The approximation in the uniform norm of a continuous function $f(\mathbf{x} )=f(x_{1},\ldots,x_{n})$ by continuous sums $g_{1}( h_{1}(\mathbf{x} )) +g_{2}( h_{2}(\mathbf{x})) $, where the functions $h_{1}$ and $h_{2}$ are fixed, is considered. A Chebyshev type criterion for best approximation is established in terms of paths with respect to the functions $h_{1}$ and $h_{2}$.

Autorzy

  • Vugar E. IsmailovMathematics and Mechanics Institute
    Azerbaijan National Academy of Sciences
    Az-1141, Baku, Azerbaijan
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek