The one-sided ergodic Hilbert transform in Banach spaces

Tom 196 / 2010

Guy Cohen, Christophe Cuny, Michael Lin Studia Mathematica 196 (2010), 251-263 MSC: Primary 47A35, 28D05, 37A05; Secondary 47B38. DOI: 10.4064/sm196-3-3

Streszczenie

Let $T$ be a power-bounded operator on a (real or complex) Banach space. We study the convergence of the one-sided ergodic Hilbert transform $\lim_n \sum_{k=1}^n \frac{T^k x}k$. We prove that weak and strong convergence are equivalent, and in a reflexive space also $\sup_n \|\sum_{k=1}^n \frac{T^k x}k\| < \infty$ is equivalent to the convergence. We also show that $-\sum_{k=1}^\infty \frac{T^k}k$ (which converges on $(I-T)X$) is precisely the infinitesimal generator of the semigroup $(I-T)^r\,_{|{\overline{(I-T)X}}}$.

Autorzy

  • Guy CohenDepartment of Electrical Engineering
    Ben-Gurion University
    Beer Sheva 84105, Israel
    e-mail
  • Christophe CunyEquipe ERIM
    University of New Caledonia
    Nouméa, New Caledonia
    e-mail
  • Michael LinDepartment of Mathematics
    Ben-Gurion University
    Beer Sheva 84105, Israel
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek