On quasi-compactness of operator nets on Banach spaces

Tom 203 / 2011

Eduard Yu. Emel'yanov Studia Mathematica 203 (2011), 163-170 MSC: Primary 47A35; Secondary 47B99, 47L05, 47S99. DOI: 10.4064/sm203-2-3

Streszczenie

The paper introduces a notion of quasi-compact operator net on a Banach space. It is proved that quasi-compactness of a uniform Lotz–Räbiger net $(T_\lambda )_{\lambda }$ is equivalent to quasi-compactness of some operator $T_\lambda $. We prove that strong convergence of a quasi-compact uniform Lotz–Räbiger net implies uniform convergence to a finite-rank projection. Precompactness of operator nets is also investigated.

Autorzy

  • Eduard Yu. Emel'yanovDepartment of Mathematics
    Middle East Technical University
    06531 Ankara, Turkey
    and
    Sobolev Institute of Mathematics
    630090 Novosibirsk, Russia
    e-mail
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek