# Wydawnictwa / Czasopisma IMPAN / Studia Mathematica / Wszystkie zeszyty

## Quasiconformal mappings and exponentially integrable functions

### Tom 203 / 2011

Studia Mathematica 203 (2011), 195-203 MSC: Primary 30C62, 46E30; Secondary 47B33. DOI: 10.4064/sm203-2-5

#### Streszczenie

We prove that a $K$-quasiconformal mapping $f:\mathbb R^2\rightarrow\mathbb R^2$ which maps the unit disk $\mathbb D$ onto itself preserves the space ${\rm EXP}(\mathbb D)$ of exponentially integrable functions over $\mathbb D$, in the sense that $u \in {\rm EXP}(\mathbb D)$ if and only if $u \circ f^{-1} \in {\rm EXP}(\mathbb D)$. Moreover, if $f$ is assumed to be conformal outside the unit disk and principal, we provide the estimate $$\frac 1{1+K\log K}\le \frac{\|u \circ f^{-1}\|_{{\rm EXP}(\mathbb D)}}{\|u\|_{\rm{EXP}(\mathbb D)} } \le 1+K\log K$$ for every $u \in {\rm EXP}(\mathbb{D})$. Similarly, we consider the distance from $L^\infty$ in $\rm EXP$ and we prove that if $f:{\mit\Omega} \rightarrow {\mit\Omega}^\prime$ is a $K$-quasiconformal mapping and $G \subset \subset \mit\Omega$, then $$\frac 1 K \le \frac{{\rm dist}_{{\rm EXP}(f(G))} (u \circ f^{-1},L^\infty(f(G)))}{ {\rm dist}_{{\rm EXP}(f(G))} (u,L^\infty(G ))}\le K$$ for every $u \in{\rm EXP}(\mathbb G)$. We also prove that the last estimate is sharp, in the sense that there exist a quasiconformal mapping $f:\mathbb D \rightarrow \mathbb D$, a domain $G \subset \subset \mathbb D$ and a function $u\in {\rm EXP}(G)$ such that $${\rm dist}_{{\rm EXP}(f(G))} (u \circ f^{-1},L^\infty(f(G)))= K\,{\rm dist}_{{\rm EXP}(f(G))} (u,L^\infty(G )).$$

#### Autorzy

• Fernando FarroniDipartimento di Matematica e Applicazioni “R. Caccioppoli”
Università degli Studi di Napoli Federico II
Via Cintia
80126 Napoli, Italy
e-mail
• Raffaella GiovaDipartimento di Statistica e Matematica
per la Ricerca Economica
Università degli Studi di Napoli Parthenope
Via Medina, 40
80133 Napoli, Italy
e-mail

## Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Odśwież obrazek