On $(n,k)$-quasiparanormal operators

Tom 209 / 2012

Jiangtao Yuan, Guoxing Ji Studia Mathematica 209 (2012), 289-301 MSC: gxji@snnu.edu.cn DOI: 10.4064/sm209-3-6

Streszczenie

Let $T$ be a bounded linear operator on a complex Hilbert space $\mathcal{H}$. For positive integers $n$ and $k$, an operator $T$ is called $(n,k)$-quasiparanormal if \[ \|T^{1+n}(T^{k}x)\|^{{1}/{(1+n)}}\|T^{k}x\|^{{n}/{(1+n)}}\geq\|T(T^{k}x)\|\quad \hbox{for }x\in\mathcal{H}. \] The class of $(n,k)$-quasiparanormal operators contains the classes of $n$-paranormal and $k$-quasiparanormal operators. We consider some properties of $(n,k)$-quasiparanormal operators: (1) inclusion relations and examples; (2) a matrix representation and SVEP (single valued extension property); (3) ascent and Bishop's property $(\beta)$; (4) quasinilpotent part and Riesz idempotents for $k$-quasiparanormal operators.

Autorzy

  • Jiangtao YuanCollege of Mathematics
    and Information Science
    Shaanxi Normal University
    Xian 710062, China
    and
    School of Mathematics and Information Science
    Henan Polytechnic University
    Jiaozuo 454000, Henan Province, China
    e-mail
  • Guoxing JiCollege of Mathematics
    and Information Science
    Shaanxi Normal University
    Xian 710062, China
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek