$L^p$ spectral multipliers on the free group $N_{3,2}$
Tom 217 / 2013
                    
                    
                        Studia Mathematica 217 (2013), 41-55                    
                                        
                        MSC: Primary 43A22; Secondary 42B15.                    
                                        
                        DOI: 10.4064/sm217-1-3                    
                                    
                                                Streszczenie
Let $L$ be a homogeneous sublaplacian on the $6$-dimensional free $2$-step nilpotent Lie group $N_{3,2}$ on three generators. We prove a theorem of Mikhlin–Hörmander type for the functional calculus of $L$, where the order of differentiability $s > 6/2$ is required on the multiplier.
 
             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                             
                                                         
                                                            