Bernstein type properties of two-sided hypersurfaces immersed in a Killing warped product
Antonio W. Cunha, Eudes L. de Lima, Henrique F. de Lima, Eraldo A. Lima Jr., Adriano A. Medeiros
Studia Mathematica 233 (2016), 183-196
MSC: Primary 53C42; Secondary 53B30, 53C50.
DOI: 10.4064/sm8464-4-2016
Opublikowany online: 19 May 2016
Streszczenie
Our purpose is to apply suitable maximum principles in order to obtain Bernstein type properties for two-sided hypersurfaces immersed with constant mean curvature in a Killing warped product $M^n\times _\rho \mathbb R$, whose curvature of the base $M^n$ satisfies certain constraints and whose warping function $\rho $ is concave on $M^n$. For this, we study situations in which these hypersurfaces are supposed to be either parabolic, stochastically complete or, in a more general setting, $L^1$-Liouville. Rigidity results related to entire Killing graphs constructed over the base of the ambient space are also given.
Autorzy
- Antonio W. CunhaDepartamento de Matemática
Universidade Federal do Piauí
64049-550 Teresina, Piauí, Brazil
e-mail
- Eudes L. de LimaCampus Pau dos Ferros
Universidade Federal Rural do Semi-Árido
59900-000 Pau dos Ferros
Rio Grande do Norte, Brazil
e-mail
- Henrique F. de LimaDepartamento de Matemática
Universidade Federal de Campina Grande
58429-970 Campina Grande, Paraíba, Brazil
e-mail
- Eraldo A. Lima Jr.Departamento de Matemática
Universidade Federal da Paraíba
58051-900 João Pessoa, Paraíba, Brazil
e-mail
- Adriano A. MedeirosDepartamento de Matemática
Universidade Federal da Paraíba
58051-900 João Pessoa, Paraíba, Brazil
e-mail