JEDNOSTKA NAUKOWA KATEGORII A+

Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

On separation of points from additive subgroups of $l_{p}^{n}$ by linear functionals and positive definite functions

Tom 237 / 2017

Wojciech Banaszczyk, Robert Stegliński Studia Mathematica 237 (2017), 57-69 MSC: Primary 46B20; Secondary 43A35. DOI: 10.4064/sm8559-10-2016 Opublikowany online: 27 January 2017

Streszczenie

Let $X$ be a finite-dimensional real normed space, and $K$ a closed additive subgroup of $X$. Let $a\in X\setminus K$ and let $d_X(a,K)$ be the distance from $a$ to $K$. We say that a linear functional $f\in X^*$ separates $a$ from $K$ if $d_\mathbb {R}(f(a),f(K)) \gt 0$. We say that a continuous positive definite function $\varphi :X\to \mathbb {C}$ separates $a$ from $K$ if $\varphi $ is constant on $K$ and $\varphi (a)\not =\varphi (0)$. We consider the following question: how well can $a$ be separated from $K$ by linear functionals and positive definite functions? We introduce certain quantities, denoted by $\mathit {wd}_{X}(a,K)$ and $\mathit {pd}_{X}(a,K)$, which measure the ‘distance’ from $a$ to $K$ with respect to linear functionals and positive definite functions, respectively. Then we define \[ \operatorname {wp}(X) := \sup\frac {\mathit {pd}_{X}(a,K)} {\mathit {wd}_{X}(a,K)}, \ \hskip 1em \operatorname {ps}(X) := \sup\frac {d_X(a,K)} {\mathit {pd}_{X}(a,K)}, \] the suprema taken over all closed subgroups $K\subset X$ and all $a\in X\setminus K$. We give some estimates of $\operatorname {wp}(X)$ and $\operatorname {ps}(X)$, mainly for $X=l_p^n$. In particular we prove that $\operatorname {wp}(l_p^n) \asymp _n n^{\max \{1/2,1/p\}}$ if $1\le p\le \infty $, and $\operatorname {ps}(l_p^n) \asymp _n n^{1/2}$ if $2\le p \lt \infty $. The results may be treated as finite-dimensional analogs of those obtained in Banaszczyk and Stegliński (2008, Sec. 5) for diagonal operators in $l_p$ spaces.

Autorzy

  • Wojciech BanaszczykFaculty of Mathematics
    and Computer Science
    University of Łódź
    90-238 Łódź, Poland
    e-mail
  • Robert SteglińskiInstitute of Mathematics
    Faculty of Technical Physics
    Information Technology
    and Applied Mathematics
    Łódź University of Technology
    90-924 Łódź, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek