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Collatz map as a non-singular transformation

by

I. Assani (Chapel Hill, NC)

Abstract. Let T be the map defined on N = {1, 2, . . .} by T (n) = n/2 if n is even
and T (n) = (3n + 1)/2 if n is odd. Consider the dynamical system (N, 2N, T, µ) where µ
is the counting measure. This dynamical system has the following properties:

1. There exists an invariant finite measure γ such that γ(A) ≤ µ(A) for all A ⊂ N.
2. For each function f ∈ L1(µ) the averages 1

N

∑N
n=1 f(T

nx) converge for every x ∈ N to
f∗(x) where f∗ ∈ L1(µ).

We also show that the Collatz conjecture is equivalent to the existence of a finite measure ν
on (N, 2N) making the operator V f = f ◦ T power bounded in L1(ν) with conservative
part {1, 2}.

1. Introduction. The original Collatz conjecture states that if S is the
map defined on N by Sn = n/2 if n is even and Sn = 3n + 1 if n is odd,
then for each natural number n there exists k ∈ N such that T kn = 1. This
conjecture has been extensively studied. See the nice survey and analysis of
this subject by J. Lagarias [12, 13]; see also Y. Sinai [16] and E. Akin [1].
As noted in [12], S. Kakutani, S. Ulam and P. Erdős had been interested in
this problem. Several attempts have been made after Lagarias’ survey [13],
and some offered equivalent formulations; see [4, 10, 6, 3, 9]. An operator-
theoretic approach was presented in [14].

An equivalent and more convenient map to study this conjecture is de-
fined by

Tn = n
2 if n is even and Tn = 3n+1

2 if n is odd.

A cycle for T is a sequence a, Ta, . . . , T i−1a where a ∈ N, T ja ̸= a for
1 ≤ j ≤ i− 1 and T ia = a. Since T1 = 2 and T2 = 1, {1, 2} is a cycle.
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The Collatz conjecture is equivalent to the combination of the following
conjectures:

1. The only cycle for T is {1, 2}.
2. The orbit of every n ∈ N under T is bounded.

The Collatz conjecture as stated is a property of recurrence to the set
{1, 2}. More precisely, it states that from any point n ∈ N \ {1, 2} the it-
erates T k(n) will go to the set {1, 2}. Such recurrence properties have been
studied quite extensively in ergodic theory in the context of measure preserv-
ing transformations but also in the context of non-singular transformations,
which in our view fits better the Collatz map.

We recall that if S is a measurable map from the σ-finite measure space
(X,A, ν) to itself then the set (X,A, ν, S) is called a dynamical system. The
map S is said to be non-singular if for all A ∈ A we have ν(S−1(A)) = 0
whenever ν(A) = 0. Such systems are called null preserving in [11, p. 3]. In
this note we will focus on the measurable space (N, 2N) where 2N denotes the
power set of N = {1, 2, . . .}. The Collatz map T is clearly measurable with
respect to this measurable space.

Definition 1.1. The set (N, 2N, T, ν) with ν a σ-finite measure for
which T is non-singular is called the Collatz dynamical system with mea-
sure ν.

A non-negative measure ν on (N, 2N) is defined by its values on N, that
is, by the sequence of non-negative numbers ν(n) where n ∈ N. We assume
that ν(n) < ∞ for each n. The measure ν is σ-finite if

∑∞
n=1 ν(n) = ∞

and finite if
∑∞

k=1 ν(n) < ∞. A natural σ-finite measure on (N, 2N) is the
counting measure µ where µ(n) = 1 for each n ∈ N. Since this counting
measure has only the empty set as nullset, the map T is non-singular with
respect to this measure. Another measure θ on (N, 2N) is equivalent to the
counting measure if θ(n) > 0 for each n ∈ N.

Our main result in this short paper is the following.

Theorem 1.2. Let (N, 2N, T, µ) be the Collatz dynamical system with µ
counting measure. The following are equivalent:

(1) There exists a finite measure α equivalent to µ for which the dynamical
system (N, 2N, T, α) is power bounded in L1(α) with conservative part
{1, 2}.

(2) For each n ∈ N there exists k such that T k(n) ∈ {1, 2}.

Our main approach for the proof will come from ergodic theory. More
precisely, we will consider the dynamical system (N, 2N, T, µ) where µ is the
counting measure, and study recurrence properties of the Collatz map T on
the measurable space (N, 2N). The paper is organized as follows.
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• In the second section we recall some tools from ergodic theory that we will
use later. These tools include Hopf’s decomposition, power bounded non-
singular transformations and asymptotically mean bounded non-singular
transformations.

• In the third section we apply these tools to the dynamical system (N, 2N,
T, µ) and obtain a partition of N into three sets C, D1 and D2. The set C is
an at most countable union of cycles. Elements in D1 after finitely iterates
of T enter C. Finally, the invariant set D2 under T (i.e. T−1(D2) = D2)
is the set of elements with unbounded trajectories. We establish ergodic
properties of the dynamical system (N, 2N, T, µ). This decomposition is
actually valid for all maps V : N → N.

• In the fourth section we prove that the Collatz conjecture is equivalent to
the existence of a finite measure ν on (N, 2N) making T power bounded
and non-singular.

2. Tools from ergodic theory

2.1. Hopf decomposition. In this subsection we recall some tools and
definitions used in ergodic theory that we will apply in the next section to
the dynamical system (N, 2N, T, µ).

Definition 2.1. Let (X,A, ρ) be a σ-finite measure space and V a mea-
surable map from X to X. The map V is said to be non-singular with respect
to ρ if for each measurable subset of A, we have ρ(V −1(A)) = 0 whenever
ρ(A) = 0.

Definition 2.2. A set C is said to be V -absorbing if C ⊂ V −1(C).

It is clear that T is non-singular with respect to the counting measure µ,
and to any other measure ν which is equivalent to µ. Actually for the measure
space (N, 2N, µ) the only null set is the empty set.

Definition 2.3. A measurable subset W ∈ A is said to be wandering if
V −i(W ) ∩ V −j(W ) is empty whenever i, j ∈ N and i ̸= j.

Almost every point of a wandering set W never returns to W under V .
This means that for x ∈ W , V nx /∈ W for each n ∈ N.

The next theorem is the “Hopf decomposition” applied to a dynami-
cal system (X,A, ρ, V ) where V is non-singular with respect to the σ-finite
measure ρ. A proof of the “Hopf Decomposition Theorem” can be found in
Krengel’s book [11, p. 17].

Theorem 2.4 (Hopf decomposition). Let (X,A, V, ρ) be a non-singular
dynamical system. The space X can be decomposed into two disjoint measur-
able subsets C and D with the following properties:
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(1) C is V -absorbing.
(2) The restriction of V to C is conservative (the map V returns (a.e.) to

every subset of C with positive measure infinitely often). In particular,
if ρ(m) > 0 for every m ∈ C then there exists k(m) ∈ N such that
V k(m)(m) = m.

(3) The set D = Cc is called the dissipative part. It is an at most countable
union of wandering sets.

One can remark that “Hopf decomposition” is the same for each measure
equivalent to ρ.

2.2. L1 power bounded non-singular transformations. The sec-
ond tool from ergodic theory is power bounded non-singular transformations.

Definition 2.5. Let (X,A, V, ρ) be a non-singular dynamical system.
It is power bounded in L1(ρ) if there exists a finite constant M such that
ρ(V −n(A)) ≤ Mρ(A) for all A ∈ A and all n ∈ N.

Power bounded non-singular dynamical systems on finite measure spaces
have nice recurrence properties expressed in the next theorem.

Theorem 2.6. Let (X,A, ρ, V ) be a non-singular dynamical system. As-
sume that ρ(X) < ∞ and that this dynamical system is power bounded in
L1(ρ). Then:

(1) There exists v∗0 ∈ L1
+(ρ) such that

	
1Av

∗
0 dρ =

	
1A ◦ V v∗0 dρ.

(2) The conservative part C of (X,A, ρ, V ) is equal to the set where v∗0 > 0.
(3) For ρ-a.e. x ∈ D there exists m(x) ∈ N such that V m(x)(x) ∈ C.

The proof of this theorem can be found in [5, Theorem 12, p. 683] and
[2, Theorem III.1].

The function v∗0 is obtained by considering the adjoint U∗ of the op-
erator U defined by Uf = f ◦ V . As a consequence of the mean ergodic
theorem (see [8]) the averages MN (f) = 1

N

∑N
n=1 f ◦ V n converge for each

f ∈ L1(ρ). We also have, for each g ∈ L∞(ρ), the mean convergence of the
averages M∗

N (g) = 1
N

∑N
n=1(U

∗)n(g) where U∗ is the adjoint operator of U.
As a consequence we have the convergence of the averages M∗

N (1X) to the
U∗-invariant function v∗0, and for each function f ∈ L1(ρ) we obtain

(2.1) lim
N

�
MN (f) dρ = lim

N

�
f.M∗

N (1X) dρ =
�
f.v∗0 dρ.

One can remark that the map γ : A ∋ A 7→ γ(A) =
	
1Av

∗
0 dρ is invariant

with respect to V (i.e. γ(A) = γ(V −1(A)) and γ(X) = ρ(X) > 0.
For an L1 power bounded dynamical system defined on a finite measure

space, almost every point x in D (the dissipative part given by Hopf’s de-
composition) eventually enters its conservative part C. Indeed, assume that
this is not the case. Then we could find a set B ∈ A such that ρ(B) > 0 and
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V m(B) ⊂ D for each m ∈ N. Then we would have B ⊂ V −m(D) for each
m ∈ N and using (2.1) we would obtain the following contradiction:

0 < ρ(B) ≤ 1

N

N∑
n=1

ρ(V −m(D)) →N

�
1Dv

∗
0 dρ = 0.

2.3. Asymptotically mean bounded non-singular dynamical sys-
tem. In this section we introduce one more tool from ergodic theory when
the measure ρ is σ-finite and ρ(X) = ∞.

Definition 2.7. Let (X,A, ρ, V ) be a non-singular dynamical system.
We say that this system is asymptotically mean bounded in L1(ρ) if there
exists a finite constant M such that

lim sup
N

1

N

N∑
n=1

�

Y

1A ◦ V n dρ ≤ Mρ(A)

for each measurable set A ∈ A and for each Y such that ρ(Y ) < ∞.

It was shown in [15] that the system (X,A, ρ, V ) is asymptotically mean
bounded in L1(ρ) iff for each f ∈ L1(ρ) the averages

1

N

N∑
n=1

f(V nx) converge a.e. to f∗(x) where f∗ ∈ L1(ρ).

We present one more result.

Theorem 2.8. Let (X,A, ρ, V ) be an asymptotically mean bounded non-
singular dynamical system with ρ being a σ-finite measure.

(1) There exists an invariant σ-finite measure ∆ such that ∆(A) ≤ Mρ(A)
for all A ∈ A.

(2) For each function f ∈ L1(ρ) the averages 1
N

∑N
n=1 f(V

nx) converge a.e.
to f∗(x) where f∗ ∈ L1(ρ).

(3) If the system (X,A, ρ, V ) satisfies conditions (1)–(3) of Theorem 2.6

then the averages 1
N

∑N
n=1 f(V

nx) converge a.e. for every f ∈ L∞(ρ).

Proof. The first two statements are consequences of results in [15]. The
third statement can be derived from [7, Theorem 1].

3. Ergodic properties of the Collatz map. In this section we apply
the ergodic tools gathered in the previous section to the dynamical system
(N, 2N, T, µ), T being the Collatz map and µ the counting measure. We start
with the Hopf decomposition.

3.1. Hopf decomposition for the Collatz map

Theorem 3.1. Consider the dynamical system (N, 2N, T, µ). There exists
a partition of N into three sets C, D1 and D2 such that:
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(1) C is the conservative part given by the Hopf decomposition (Theorem
2.4). It is composed of an at most countable number of cycles Ci, 1 ≤
i < ∞. The complement of C, the dissipative part, is partitioned into
two subsets D1 and D2.

(2) D1 is equal to
⋃∞

k=1 T
−k(C) \ C. It is the set of elements of D which

enter C after finitely many iterates of T , into one of the cycles Ci.
(3) T−1(C ∪D1) = C ∪D1.
(4) The set D2 is the complement of C ∪ D1 into N. It is the set of ele-

ments of N having an unbounded trajectory. The set D2 is invariant, i.e.
T−1(D2) = D2.

Proof. The fact that C, the conservative part, is a countable union of
cycles follows from the fact that on C the map T is recurrent, meaning that
it returns infinitely often to any set of positive measure in C. Since each
point has positive measure, this recurrence property creates cycles in C.
Their number is clearly at most countable since N itself is countable.

The set C is T -absorbing in the sense that C ⊂ T−1(C). The set D1

is equal to
⋃

j T
−j(T−1(C) \ C) which can be written [

⋃∞
k=1 T

−k(C)] \ C.
Therefore, D1 is the subset of D = Cc composed of points not in C which
enter C after finitely many iterates of T .

Since
⋃∞

j=0 T
−j(C) = C ∪D1 and the sequence T−j(C) is increasing, we

have

T−1(C ∪D1) = T−1
[ ∞⋃
j=0

T−j(C)
]
=

∞⋃
j=1

T−j(C) =

∞⋃
j=0

T−j(C) = C ∪D1.

As a consequence, T−1(D2) = D2 if we denote by D2 the complement of
C ∪D1.

Remark. The set D1 is not empty because T−1({1, 2}) = {1, 2, 4} and
4 is in the dissipative part of T .

3.2. Pointwise convergence: Existence of an invariant measure.
In this section we check that the tools listed in the previous section apply
to the dynamical system (N, 2N, T, µ).

Theorem 3.2. The system (N, 2N, T, µ) is asymptotically mean bounded
in L1(µ).

Proof. We need to show that

(3.1) lim sup
N

1

N

N∑
n=1

�

Y

1A ◦ Tn dµ ≤ Mµ(A).

for each measurable set A ∈ A and for each Y such that µ(Y ) < ∞. The
condition µ(Y ) < ∞ implies that the set Y is finite. Therefore, it is enough to
show that (3.1) holds for Y = {y} for each y ∈ N. We distinguish two cases.
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If µ(A) = ∞ then (3.1) is clearly true. We can assume that µ(A) < ∞, or in
other words A is a finite subset of N. This observation allows us to reduce
the proof of (3.1) to the case where Y = {y} and A = {a}.
• If (y, a) ∈ D ×D then limN

1
N

∑N
n=1 1a(T

ny) = 0 since {y} and {a} are
wandering sets.

• If (y, a) ∈ D2 × C then limN
1
N

∑N
n=1 1a(T

ny) = 0 because the orbit
{Tny : n ∈ N} is contained in the invariant set D2.

• If (y, a) ∈ D1 × Cj where Cj is one of the cycles in C, then

lim
N

1

N

N∑
n=1

1a(T
ny) =

1

#Cj
≤ µ({a}).

• If (y, a) ∈ Cl × Cj where Cl and Cj are cycles in C, then

lim
N

1

N

N∑
n=1

1a(T
ny) =

1

#Cj
≤ µ({a}) if l = j

and limN
1
N

∑N
n=1 1a(T

ny) = 0 if l ̸= j.

In summary, we have shown that

lim
N

1

N

N∑
n=1

�

{y}

1A ◦ Tn dµ = lim
N

1

N

N∑
n=1

1a(T
ny) ≤ µ({a}).

By linearity we can conclude that

lim
N

1

N

N∑
n=1

�

Y

1A ◦ Tn dµ ≤ µ(A)

for each measurable set A ∈ A and for each Y such that µ(Y ) < ∞. In other
words, the dynamical system (N, 2N, T, µ) is asymptotically mean bounded
in L1(µ). The constant M is equal to 1.

As a consequence of Theorem 2.8 we obtain for the dynamical system
(N, 2N, T, µ) the properties listed in the previous section. The next theorem
is part of the abstract.

Theorem 3.3. The dynamical system (N, 2N, T, µ) has the following prop-
erties:

(1) There exists an invariant finite measure γ such that γ(A) ≤ µ(A) for all
A ⊂ N.

(2) For each function f ∈ L1(µ) the averages 1
N

∑N
n=1 f(T

nx) converge for
every x ∈ N to f∗(x) where f∗ ∈ L1(µ).

Proof. Compared to Theorem 2.8, we can eliminate the “almost every-
where condition” in the second part of the theorem because the only nullset
for (N, 2N, µ) is the empty set.
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(1) One can make the value of f∗ more explicit by using the computations
made for the various cases for (y, a). For fA = 1A with µ(A) < ∞, we have

(3.2) f∗
A =

∞∑
i=1

1⋃∞
j=0 T

−j(Ci)
#(A ∩ Ci)

#Ci
.

(2) As a consequence of (3.2) one can find a finite invariant measure
equivalent to ∆. It suffices to take a finite measure β equivalent to µ and
integrate f∗

A with respect to β. We obtain

γ(A) =
�
f∗
A dβ =

∞∑
i=1

β
( ∞⋃
j=0

T−j(Ci)
)#(A ∩ Ci)

#Ci
.

We have γ(A) = γ(T−1(A)) for all A ∈ 2N with µ(A) < ∞, since f∗
A◦T = f∗

A.
The measure being finite, this last equality extends by continuity to 2N. One
can observe that γ(A) = 0 if A ⊂ D since in this case #(A ∩ Ci)/#Ci = 0,
the sets Ci being in the conservative part C. In other words, the measure γ
is supported on C. The measure γ is finite because the sets

⋃∞
j=0 T

−j(Ci)
are disjoint and thus

∞∑
i=1

β
( ∞⋃
j=0

T−j(Ci)
)
≤ β(N) < ∞.

One can choose β in such a way that β(
⋃∞

j=0 T
−j(Ci)) = 2−i. Then

γ(A) =
∞∑
i=1

2−i νi(A)

pi
,

where νi is the finite invariant measure with support Ci and defined by
νi(A) = #(A ∩ Ci) and pi = #(Ci) is the period of the cycle Ci.

Remark. 1. If the Collatz conjecture is true then the invariant measure
γ is uniform on the cycle {1, 2}.

2. If the conjecture is false in the sense that there are additional cycles
then there are many invariant finite measures, e.g. barycentric averages of
the uniform invariant measures defined on these cycles.

3. If the conjecture is false and there is an unbounded orbit then we can
construct on D2 many σ-finite infinite invariant measures. Such a construc-
tion is made in the following theorem.

We will need the following lemma.

Lemma 3.4. Let N2 = {k ∈ N : 2k = 1 mod 3} and let a ∈ D2. There
exist an infinite number of k ∈ N such T ka ∈ N2.

Proof. The set N2 is also the set of natural numbers of the form 3p+ 2.
We denote N1 = {3p + 1 : p ∈ N} and N0 = {3p : p ∈ N}. It is enough to
show that if we take an element in the orbit of a, say q = Tma ∈ N0 ∪N1,
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then there exists a natural number s such that T s+ma ∈ N2. We distinguish
two cases:

(1) If q = 3k2hn where n /∈ N0 ∪ 2N then T hq = 3kn, which is odd. Thus
T h+1q = 1

2(3
k+1n+ 1), which belongs to N2.

(2) If q = 6p+r where r = 1, 4 (the case r = 3 implies q ∈ N0 treated in (1))
then T (6p+ 1) = 9p+ 2 ∈ N2 and T (6p+ 4) = 3p+ 2 ∈ N2.

These estimates prove the lemma.

Theorem 3.5. If the Collatz conjecture is false then there exist σ-finite
infinite invariant measures with support in D2. Furthermore these measures
do not satisfy condition (1) of Theorem 2.8.

Proof. Denote again N2 = {k ∈ N : 2k = 1mod 3}. These are the only
natural numbers k such that #{T−1(k)} = 2. Take a ∈ D2 and consider
the invariant set F =

⋃∞
j=0 T

−j
⋃∞

k=0{T ka}. To check that a measure θ is
invariant it is enough to verify that θ(T−1(x)) = θ(x) at each x ∈ F .

We start by setting θ(a) = 1. In the subtree generated by {a}, that is,
the set T1 =

⋃∞
j=0 T

−j(a), we distinguish two cases:

• If a /∈ N2 then #{T−1(a)} = 1 and we define θ(T−1(a)) = 1.
• If a ∈ N2 then {T−1(a)} = {b1, b2} and we define θ(b1) = θ(b2) = 1/2.

We have θ(T−1(a)) = θ(a). We proceed in a similar way along the subtree⋃∞
j=0 T

−j(a). To preserve the invariance property of θ along this subtree
we consider T−1(b1) and T−1(b2), again distinguishing the cases where the
cardinality of these sets is 1 or 2. For instance, if T−1(b1) = {c1, c2} then we
set θ(c1) = θ(c2) =

1
2θ(b1). If T−1(b2) = {d} then θ(d) = θ(b2).

Proceeding inductively along the subtree we define θ for each node of
this subtree in such a way that θ(T−1(n)) = θ(n) for each n in the subtree.

Now we can define θ on the subtree T2 =
⋃∞

j=0 T
−j(Ta). Here again we

distinguish two cases:

• If Ta /∈ N2 then we set θ(Ta) = θ(a) = 1.
• If Ta ∈ N2 then T−1(Ta) = {a, e}, and we set θ(e) = 1 and θ(Ta) = 2.

To define θ on the subtree
⋃∞

j=0 T
−j(e) we can proceed as we did for⋃∞

j=0 T
−j(a). One can observe that the two subtrees T1 and T2 are disjoint

since any node in the intersection would have two distinct images under T .
The set {T ka : k ∈ N} containing no cycle because D2 does not have

any, we can proceed by induction on T j(a) and define an invariant measure
on the invariant set F the measure is σ-finite, and infinite since

∞∑
k=0

θ(T ka) ≥
n∑

k=0

θ(T ka) ≥ n+ 1.
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To complete the proof we can use Lemma 3.4. In the orbit of {a} under T
there are infinitely nodes in N2. Therefore, lim supk θ(T

ka) = ∞ and this
violates condition (1) in Theorem 2.8 since Mµ(T ka) = M .

4. Characterization of the Collatz conjecture through power
bounded non-singular transformations. In this section we use some of
the ideas in the proof of Theorem 3.1 to derive a characterization of the
Collatz map through power bounded non-singular transformations. More
precisely, we prove the following theorem by exploiting the fact that the
map T is onto and that T−1(k) is a singleton unless 2k = 1 mod 3.

Theorem 4.1. Let (N, 2N, T, µ) be the Collatz dynamical system with µ
the counting measure. The following are equivalent:

(1) There exists a finite measure α equivalent to µ for which the dynamical
system (N, 2N, T, α) is power bounded in L1(α) with conservative part
{1, 2}.

(2) For each n ∈ N there exists k such that T k(n) ∈ {1, 2}.

Proof. (1) implies (2) since as indicated in Theorem 2.6, for a power
bounded non-singular transformation, points in D enter the conservative
part C after finitely many iterates. The assumption in (2) implies that {1, 2}
is the conservative part of (N, 2N, T, µ) (and for any measure equivalent to µ).
Simple considerations show that T−1(C) \ C = {4}. Therefore D is just
the “tree” created by the inverse map T−1 starting at 4. This is the set⋃∞

j=0 T
−j({4}).

One can construct a power bounded transformation by starting with
δ = α(4) > 0 and then looking at the predecessors of 4. Since 8 = T−1(4)
is the only predecessor of 4, we set α(8) = 1

4δ. Then 8 has two predeces-
sors 16 and 5. We set α(16) = 1

4α(8) and α(5) = 1
4α(8). By induction we

define α(n) for each n ∈ D to be 1
4 of the value of its predecessor in the

tree. With this process for any subset A of the tree
⋃∞

j=0 T
−j({4}) we have

α(T−1(A)) ≤ 1
2α(A). Furthermore, we can see that α(T−n(A)) ≤ 1

2nα(A) for
every n ∈ N since T−1(D) ⊂ D. Therefore, we just need to control the values
of α(T−n(1)) and α(T−n(2)) for each n ∈ N. But since T−n(2) = T−(n+1)(1),
it is actually enough to show that for appropriate choices of δ, α1 = α(1) and
α2 = α(2) we can make the dynamical system (N, 2N, T, α) power bounded
in L1(α).

Simple computations show T−1(1) = {2}, T−2(1) = {1, 4}, T−3(1) =
{T−1(1), T−1(4)} = {2, T−1(4)}. By induction one can show that

T−n(1) ⊂ {1, 2} ∪
n−2⋃
j=0

T−j({4}).
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Indeed, assuming this is true for n we have

T−(n+1)({1, 2}) ⊂ T−1({1, 2}) ∪
n−1⋃
j=1

T−j({4}) ⊂ {1, 2} ∪
n−1⋃
j=0

T−j({4}).

Setting α1 = α2 = δ we see that

α(T−n(1)) ≤ α1

n−2∑
j=0

1

2j
≤ 2α1.

Combining this with our previous estimates one can conclude that for each
n ∈ N and each A ⊂ N we have α(T−n(A)) ≤ 2α(A).

We can also derive the following result which characterizes the bounded-
ness of the trajectories of the Collatz map.

Theorem 4.2. Let (N, 2N, T, µ) be the Collatz dynamical system with µ
the counting measure. The following are equivalent:

(1) There exists a finite measure α equivalent to µ for which the dynamical
system (N, 2N, T, α) is power bounded in L1(α).

(2) The set D2 is empty.
(3) The trajectory of each point n ∈ N is bounded.
(4) For every bounded f on N, the averages 1

N

∑N
n=1 f(T

nx) converge for
every x ∈ N.

Proof. The equivalence of (2) and (3) follows from Theorem 3.1. State-
ment (1) implies (2) because all points in the dissipative part eventually
enter one of the cycles Ci. Therefore, their trajectories are bounded and the
set D2 must be empty. Conversely, if D2 is empty then N can be partitioned
into the disjoint sets

Fj =

∞⋃
i=1

T−i(Cj).

Using the same method as in the proof of Theorem 4.1 we can define on
each set Fj a measure νj such that for any Aj ⊂ Fj we have νj(T

−n(Aj)) ≤
2νj(Aj) for each n ∈ N. We now define α =

∑∞
j=1

1
2j
νj . One can check that

α(T−n(A)) ≤ 2α(A) for each subset A of N. Thus the dynamical system
(N, 2N, T, α) is power bounded in L1(α). This shows that (1) and (2) are
equivalent.

It remains to show that (4) is equivalent to all the other statements. It
is enough to show that it is equivalent to (2). By [7], (4) implies (2). For the
converse one can observe that Theorem 3.3 shows that there exists a finite
invariant measure with support C. This together with (2) implies (4) by [7],
completing the proof.
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We have the following corollary.

Corollary 4.3. The following are equivalent for the Collatz dynamical
system (N, 2N, µ, T ):

(1) For each n ∈ N there exists k such that T kn ∈ {1, 2}.
(2) For every bounded f and x ∈ N we have

1

N

N∑
n=1

f(Tnx) → 1

2
(f(1) + f(2)).

Proof. The first statement implies that D2 is empty and that the only
cycle is {1, 2}. By Theorem 4.2(4), for each bounded f on N the averages

1

N

N∑
n=1

f(Tnx)

converge for each x ∈ N. It remains to identify the limit to obtain (2). But
this a consequence of the fact that for any x there exists a natural number
m(x) such Tm(x)x = 1. For k > m(x) the terms T kx alternate between 2

and 1. This implies that the limit of the averages is equal to f(1)+f(2)
2 .

For the converse, (2) shows that {1, 2} is the only cycle. If not, taking x
in another cycle with period p, C ′ = {a, Ta, . . . , T p−1a}, and applying the
second statement with f = 1C′ we would get∑p

k=1 f(T
kx)

p
= 1 ̸= 0 =

f(1) + f(2)

2
.

Since the averages for f bounded on N converge for each x ∈ N, this implies
that the set D2 is empty by Theorem 4.2, and proves (1).
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