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Approximation of polynomials from Walsh tail spaces

by

Alexandros Eskenazis (Paris and Cambridge) and
Haonan Zhang (Columbia, SC)

Abstract. We derive various bounds for the Lp-distance of polynomials on the
hypercube from Walsh tail spaces, extending some of Oleszkiewicz’s results (2017) for
Rademacher sums.

1. Introduction. Given n ∈ N = Z≥1, every function f : {−1, 1}n → R
admits a unique Fourier–Walsh expansion

(1.1) ∀x ∈ {−1, 1}n, f(x) =
∑

S⊆{1,...,n}

f̂(S)wS(x),

where the Walsh function wS is given by wS(x)=
∏

i∈S xi for x=(x1, . . . , xn)
in {−1, 1}n. We shall say that f is of degree at most k ∈ {1, . . . , n} if
f̂(S) = 0 for every subset S of {1, . . . , n} with |S| > k. Similarly, we say
that f belongs in the kth tail space, where k ∈ {1, . . . , n}, if f̂(S) = 0
for every subset S with |S| ≤ k. More generally, given a nonempty subset
I ⊆ {0, 1, . . . , n}, we denote

(1.2) Pn
I := {f : {−1, 1}n → R : f̂(S) = 0 for every S with |S| /∈ I}.

We shall also adopt the natural notations Pn
>k =Pn

{k+1,...,n}, P
n
≤k =Pn

{0,1,...,k},
Pn
=k = Pn

{k} and so on.
Many modern developments in discrete analysis (see [18]) are centered

around quantitative properties of functions with spectrum bounded above
or below, in analogy with estimates established for polynomials on the torus
Tn or on Rn in classical approximation theory. One of the first results of
this nature, going back at least to [3, 4], is the important fact that all finite
moments of low-degree Walsh polynomials are equivalent to each other up to
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dimension-free factors. Namely, given any 1 ≤ p ≤ q < ∞ and k ∈ N, there
exists a (sharp) constant Mp,q(k) such that for any n ≥ k, every polynomial
f : {−1, 1}n → R of degree at most k satisfies

(1.3) ∥f∥q ≤ Mp,q(k)∥f∥p,
where ∥ · ∥r always denotes the Lr-norm on {−1, 1}n with respect to the
uniform probability measure. Note that the reverse of (1.3) holds trivially
with constant 1 by Hölder’s inequality. We refer to [8, 13, 16] for the best
known bounds on the implicit constant Mp,q(k). In the special case k = 1,
(1.3) is the celebrated Khinchin inequality [15] for Rademacher sums.

Our starting point is the simple observation that the moment comparison
estimates (1.3) have the following (equivalent) dual formulation in terms of
distances from tail spaces.

Proposition 1.1. For every 1 ≤ p ≤ q < ∞ and k ∈ N, the constant
Mp,q(k) in inequality (1.3) is also the least constant for which every function
f : {−1, 1}n → R, where n ≥ k, satisfies

(1.4) inf
g∈Pn

>k

∥f − g∥p∗ ≤ Mp,q(k) inf
g∈Pn

>k

∥f − g∥q∗ ,

where the conjugate exponent r∗ of r ∈ [1,∞] satisfies 1
r∗ + 1

r = 1.

Again, the reverse of (1.4) holds with constant 1. In the special case
k = 0, inequality (1.4) becomes trivial with Mp,q(0) = 1 as both sides are
equal to |Ef |. When k = 1, which corresponds to the dual of the classical
Khinchin inequality, we derive the following more precise formula for the
distance from the tail space Pn

>1.

Theorem 1.2. For every 1 < r ≤ ∞ and n ∈ N, every f : {−1, 1}n → R
satisfies (1)

(1.5) inf
g∈Pn

>1

∥f − g∥r ≍ |Ef |+ max
i∈{1,...,n}

∣∣f̂({i})∣∣+√
r − 1

r

( n∑
i=1

f̂({i})2
)1/2

.

This is the dual to a well-known result of Hitczenko [10] (see also [17,
11]), providing p-independent upper and lower bounds for the Lp-norms of
Rademacher sums, where p ∈ [1,∞).

At this point, we should point out that in both Proposition 1.1 and
Theorem 1.2, the exponents of the norms are always strictly greater than 1.
For instance, choosing f1(x) =

∑n
i=1 xi, (1.4) gives

(1.6) ∀r ∈ (1,∞], inf
g∈Pn

>k

∥f1 − g∥r ≍r,k inf
g∈Pn

>k

∥f1 − g∥2 =
√
n.

(1) Throughout the paper we shall use standard asymptotic notation. For instance,
ξ ≲ η (or η ≳ ξ) means that there exists a universal constant c > 0 such that ξ ≤ cη and
ξ ≍ η stands for (ξ ≲ η) ∧ (η ≲ ξ). We shall use subscripts of the form ≲t,≳t,≍t when
the implicit constant c depends on some prespecified parameter t.



Approximation of polynomials from Walsh tail spaces 3

On the other hand, it follows from a result of Oleszkiewicz [19], which is the
main precursor to this work, that the L1-distance of f1 from the kth tail
space satisfies

(1.7) inf
g∈Pn

>k

∥f1 − g∥1 ≍ min {k,
√
n},

and thus exhibits a starkly different behavior as n → ∞ from the Lr-norms
with r > 1.

More generally, it is shown in [19] that for every a1 ≥ · · · ≥ an ≥ 0, we
have

(1.8) inf
g∈Pn

>k

∥faaa − g∥1 ≍ min
r∈{0,1,...,n}

{( r∑
i=1

a2i

)1/2
+ kar+1

}
,

where for aaa = (a1, . . . , an) we denote faaa(x) =
∑n

i=1 aixi and we make the
convention that an+1 = 0. The quantity appearing on the right-hand side
of (1.8) can be rephrased in terms of the K-functional of real interpolation
(see [1, Chapter 3]). Recall that if (A0, A1) is an interpolation pair, then the
Lions–Peetre K-functional is defined for every t ≥ 0 and a ∈ A0 +A1 as

(1.9) K(a, t;A0, A1) := inf {∥a0∥A0 + t∥a1∥A1 : a = a0 + a1}.
It is elementary to check (see [12]) that if a1 ≥ · · · ≥ an ≥ 0 and k ∈ N, then

(1.10) min
r∈{0,1,...,n}

{( r∑
i=1

a2i

)1/2
+ kar+1

}
≍ K(aaa, k; ℓn2 , ℓ

n
∞).

Note that the right-hand side is invariant under permutations of the entries
of aaa. The main result of this work is an appropriate extension of the upper
bound in Oleszkiewicz’s result (1.8) to polynomials of arbitrary degree on
the discrete hypercube.

Theorem 1.3. For every d ∈ N, there exists Cd ∈ (0,∞) such that for
any n ≥ k ≥ d, every polynomial f : {−1, 1}n → R of degree at most d
satisfies

(1.11) inf
g∈Pn

>k

∥f − g∥1 ≤ K(f̂ ,Cdk
d; ℓm2 , ℓm2d

d−1

),

where f̂ is the vector of Fourier coefficients of f , viewed as an element of
Rm with m =

(
n
0

)
+ · · ·+

(
n
d

)
.

As was already pointed out by Oleszkiewicz, the method of [19] does not
appear to extend beyond Rademacher sums. Instead, in our proof we shall
employ the discrete Bohnenblust–Hille inequality from approximation theory
(see [2, 7, 6, 5]) along with a classical bound of Figiel on the Rademacher
projection of polynomials. A discussion concerning the size of the implicit
constant Cd appearing in (1.11) is postponed to Section 2 (see Remark 2.3
there).
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Unlike the two-sided inequality (1.8), our bound (1.11) is only one-sided
and as a matter of fact there are examples in which it is far from op-
timal. In particular, for functions which are permutationally symmetric,
we obtain a more accurate estimate. In what follows, we shall denote by
Tk(x) =

∑k
ℓ=0 c(k, ℓ)x

ℓ the kth Chebyshev polynomial of the first kind char-
acterized by the property Tk(cos θ) = cos(kθ), where θ ∈ R. Moreover, we
shall use the ad hoc notation

(1.12) c̃(k, ℓ) :=

{
c(k, ℓ) if k − ℓ is even,
c(k − 1, ℓ) if k − ℓ is odd.

For ℓ ∈ {1, . . . , n}, let fℓ be the ℓth elementary symmetric multilinear poly-
nomial

(1.13) ∀x ∈ {−1, 1}n, fℓ(x) :=
∑

S⊆{1,...,n}
|S|=ℓ

wS(x).

We have the following bound on the distance of symmetric polynomials from
tail spaces.

Theorem 1.4. Let n, k, d ∈ N with n ≥ k ≥ d. Then every symmetric
polynomial

(1.14) f =
d∑

ℓ=0

αℓfℓ

of degree at most d on {−1, 1}n satisfies

(1.15) inf
g∈Pn

>k

∥f − g∥1 ≤
d∑

ℓ=0

|αℓ| |c̃(k, ℓ)|.

This bound can sometimes be reversed and, in particular, it gives a sharp
estimate as n → ∞ for the L1-distance of the elementary symmetric poly-
nomial fd from the kth tail space.

Corollary 1.5. For any n, k, d ∈ N with n ≥ k ≥ d, there exists
εn(k, d) > 0 such that

(1.16) |c̃(k, d)| − εn(k, d) ≤ inf
g∈Pn

>k

∥fd − g∥1 ≤ |c̃(k, d)|

and limn→∞ εn(k, d) = 0.

The main motivation behind [19] was a question of Bogucki, Nayar and
Wojciechowski, asking to estimate the L1-distance of the symmetric Radema-
cher sum f1 from the kth tail space. Corollary 1.5 extends (at least asymptot-
ically in n) the answer given by Oleszkiewicz to all symmetric homogeneous
polynomials. We point out though that for k = 1, (1.16) is sharper than
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Oleszkiewicz’s bound (1.7) as n → ∞, as (1.7) is tight only up to a multi-
plicative constant.

2. Proofs. We start with the simple duality argument leading to Propo-
sition 1.1, variants of which will be used throughout the paper.

Proof of Proposition 1.1. Consider the identity operator acting as id(h)
= h on a function of the form h : {−1, 1}n → R. Then, the optimal constant
Mp,q(k) can be expressed as

(2.1) Mp,q(k)

=
∥∥id : (Pn

≤k, ∥ · ∥p) → (Pn
≤k, ∥ · ∥q)

∥∥ =
∥∥id∗ : (Pn

≤k, ∥ · ∥q)∗ → (Pn
≤k, ∥ · ∥p)∗

∥∥
by duality. Moreover, observe that since (Pn

≤k, ∥ · ∥r) is a subspace of Lr, its
dual is isometric to

(2.2) (Pn
≤k, ∥ · ∥r)∗ = Lr∗/(P

n
≤k)

⊥ = Lr∗/P
n
>k,

where A⊥ is the annihilator of A. Since it is also clear that id∗ = id, (2.1)
concludes the proof.

Using a theorem of Hitczenko [10] as input and the same duality, we
deduce Theorem 1.2.

Proof of Theorem 1.2. The result of [10] asserts that if aaa=(a0, a1, . . . , an)
and faaa(x) = a0 +

∑n
i=1 aixi, then

(2.3) ∥faaa∥r∗ =
(
E
∣∣∣ n∑
i=0

aixi

∣∣∣r∗)1/r∗

≍ K(aaa,
√
r∗; ℓn+1

1 , ℓn+1
2 ),

where x0, x1, . . . , xn are independent Bernoulli random variables, and the
first equality holds due to symmetry. In other words, the linear operator

(2.4) T : (Rn+1,K(·,
√
r∗; ℓn+1

1 , ℓn+1
2 )) → (Pn

≤1, ∥ · ∥r∗)

given by Taaa = faaa is an isomorphism, and thus the same holds for its adjoint.
Recalling that

(2.5) K(aaa,
√
r∗; ℓn+1

1 , ℓn+1
2 ) = inf {∥bbb∥ℓn+1

1
+

√
r∗∥ccc∥ℓn+1

2
: aaa = bbb+ ccc}

and the duality between sums and intersections of normed spaces [1, Theo-
rem 2.7.1], we see that the norm of the dual of (Rn+1,K(·,

√
r∗; ℓn+1

1 , ℓn+1
2 ))

can be given by

(2.6) ∀y∈Rn+1, ∥y∥(Rn+1,K(·,
√
r∗;ℓn+1

1 ,ℓn+1
2 ))∗ = max

{
∥y∥ℓn+1

∞
,
∥y∥ℓn+1

2√
r∗

}
.

By Parseval’s identity, the action of the adjoint

(2.7) T ∗ : Lr

/
Pn
>1 → (Rn+1,K(·,

√
r∗; ℓn+1

1 , ℓn+1
2 ))∗
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is given by

(2.8) T ∗(f + Pn
>1) = (Ef, f̂({1}), . . . , f̂({n}))

and thus the conclusion is equivalent to fact that T ∗ is an isomorphism.

We now proceed to the proof of the general upper bound for polynomials
given in Theorem 1.3. The first ingredient for the proof is a discrete version
of the classical Bohnenblust–Hille inequality from approximation theory (see
the survey [7]) proven in [2, 6]. This asserts that for every d ∈ N, there exists
a (sharp) constant Bd ∈ (0,∞) such that for any n ≥ d, every polynomial
f : {−1, 1}n → R of degree at most d satisfies

(2.9)
( ∑

S⊆{1,...,n}

|f̂(S)|
2d
d+1

) d+1
2d ≤ Bd∥f∥∞.

Moreover, 2d
d+1 is the least exponent for which the implicit constant be-

comes independent of the ambient dimension n. The best known upper
bound

Bd ≤ exp(C
√
d log d)

for the constant Bd is due to Defant, Mastyło and Pérez [6].
The ℓ-Rademacher projection of a function f : {−1, 1}n → R is defined

as

(2.10) ∀x ∈ {−1, 1}n, Radℓ f(x) :=
∑

S⊆{1,...,n}
|S|=ℓ

f̂(S)wS(x).

Moreover, we write Rad≤d =
∑

ℓ≤dRadℓ. Apart from the discrete version of
the Bohnenblust–Hille inequality (2.9), we will also use a standard bound
on the norm of the ℓ-Rademacher projections which is usually attributed to
Figiel (see also [9, Section 3] for a short proof).

Proposition 2.1. Let n ≥ k ≥ d. Then every function f : {−1, 1}n → R
of degree at most k satisfies

(2.11) ∀ 0 ≤ ℓ ≤ d, ∥Radℓ f
∥∥
∞ ≤ |c̃(k, ℓ)| ∥f∥∞,

and thus

(2.12) ∥Rad≤d f∥∞ ≤
d∑

ℓ=0

∥Radℓ f∥∞ ≤
d∑

ℓ=0

|c̃(k, ℓ)| ∥f∥∞,

where c̃(k, ℓ) is given by (1.12). It is moreover known that |c̃(k, ℓ)| ≤ kℓ/ℓ!.

Combining the above with Parseval’s identity, we deduce the following
bound.
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Lemma 2.2. Let n ≥ k ≥ d. Then every function f : {−1, 1}n → R of
degree at most k satisfies
(2.13)
max {∥(Rad≤d f)

∧∥ℓm2 , σ(k, d)
−1∥(Rad≤d f)

∧∥∥
ℓm2d
d+1

}
≤ inf

g∈Pn
>d∩P

n
≤k

∥f − g∥∞,

where m =
(
n
0

)
+ · · ·+

(
n
d

)
and σ(k, d) = Bd

∑d
ℓ=0 |c̃(k, ℓ)|.

Proof. Fix a function g ∈ Pn
>d ∩ Pn

≤k. Then

(2.14) ∥(Rad≤d f)
∧∥ℓm2 ≤ ∥f̂ − ĝ∥ℓM2 = ∥f − g∥2 ≤ ∥f − g∥∞,

where M =
(
n
0

)
+ · · ·+

(
n
k

)
. Moreover, we have

∥(Rad≤d f)
∧∥ℓm2d

d+1

(2.9)

≤ Bd∥Rad≤d(f)∥∞ = Bd∥Rad≤d(f − g)∥∞

(2.12)

≤ Bd

d∑
ℓ=0

|c̃(k, ℓ)| ∥f − g∥∞.

Equipped with Lemma 2.2, we can complete the proof of Theorem 1.3.

Proof of Theorem 1.3. Consider the normed spaces X = (Pn
≤k, ∥ · ∥∞)

and Y = (Rm, ∥ · ∥Y ) with

(2.15) ∀y ∈ Rm, ∥y∥Y = max {∥y∥ℓm2 , σ(k, d)
−1∥y∥ℓm2d

d+1

},

where m =
(
n
0

)
+ · · · +

(
n
d

)
. Moreover, let Z = Pn

>d ∩ Pn
≤k ⊂ X, viewed

as a normed subspace of X. Lemma 2.2 asserts that the linear operator
A : X/Z → Y given by

(2.16) ∀f ∈ X, A(f + Z) = (f̂(S))|S|≤d,

has norm ∥A∥ ≤ 1. Therefore, the same holds for its adjoint A∗ : Y ∗ →
(X/Z)∗.

By the usual duality between sums and intersections of normed spaces
[1, Theorem 2.7.1], we see that the space Y ∗ is isometric to

(2.17) ∀w ∈ Rm, ∥w∥Y ∗ = K(w, σ(k, d); ℓm2 , ℓm2d
d−1

).

Moreover, as X/Z is a quotient of X, its dual is the subspace of X∗ = L1/P
n
>k

which is identified with the annihilator of Z inside X∗. In other words, it is
the set

(X/Z)∗ = {f + Pn
>k : E[fg] = 0 for every g ∈ Z}

= {f + Pn
>k : f ∈ Pn

≤d}
= span(Pn

≤d ∪ Pn
>k)/P

n
>k
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with the L1 quotient norm. Finally, for a sequence aaa = (aS)|S|≤d ∈ Y ∗ and
an equivalence class f + Z ∈ X/Z, we have
(2.18)

⟨aaa,A(f + Z)⟩ =
∑

S⊆{1,...,n}
|S|≤d

aS f̂(S) =
〈 ∑

S⊆{1,...,n}
|S|≤d

aSwS + Pn
>k, f + Z

〉

= ⟨A∗(aaa), f + Z⟩,

where the first brackets ⟨·, ·⟩ denote the duality in Y and the following brack-
ets denote the duality in X/Z. Therefore, we conclude that

(2.19) ∀aaa ∈ Y ∗, A∗(aaa) =
∑

S⊆{1,...,n}
|S|≤d

aSwS + Pn
>k,

and thus the condition ∥A∗∥ ≤ 1 means that for any f : {−1, 1}n → R of
degree at most d,

(2.20) inf
g∈Pn

>k

∥f − g∥1 = ∥A∗(f̂ )∥(X/Z)∗ ≤ ∥f̂ ∥Y ∗ = K(f̂ , σ(k, d); ℓm2 , ℓm2d
d−1

).

Finally, since

(2.21) σ(k, d) ≤ Bd

d∑
ℓ=0

|c̃(k, ℓ)| ≤ Bd

d∑
ℓ=0

kℓ

ℓ!
≤ eBdk

d,

we deduce the conclusion of the theorem with Cd = eBd.

Remark 2.3. To the best of our knowledge, there are no nonconstant
lower bounds on the size of the discrete Bohnenblust–Hille constant Bd, so
it is even conceivable that the constant Cd in (1.11) can be chosen to be
independent of d.

Remark 2.4. A duality argument similar to that employed for Theo-
rem 1.3 shows that for every d ∈ N, the constant Bd in inequality (2.9) is
also the least constant for which every function f : {−1, 1}n → R, where
n ≥ d, satisfies

(2.22) inf
g∈Pn

>d

∥f − g∥1 ≤ Bd

( ∑
S⊆{1,...,n}

|S|≤d

|f̂(S)|
2d
d−1

) d−1
2d

.

Remark 2.5. It was pointed out to us by Oleszkiewicz that the main
result (1.8) of [19] also admits a dual formulation. Namely, for every aaa =
(a1, . . . , an) ∈ Rn, we have

(2.23) inf {∥faaa − g∥∞ : g ∈ Pn
{0}∪{2,...,k}} ≍ max {∥aaa∥ℓn2 , ∥aaa∥ℓn1 /k}.

This can be proven using similar ideas as in the proof of Theorem 1.3.
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A slight variant of the arguments above also yields Theorem 1.4 for sym-
metric functions.

Proof of Theorem 1.4. Let f be a permutationally symmetric function of
the form f =

∑d
ℓ=0 αℓfℓ, where fℓ is the ℓth elementary symmetric polyno-

mial. Then the Hahn–Banach theorem gives

(2.24) inf
g∈Pn

>k

∥f − g∥1 = sup
0̸=h∈Pn

≤k

E[fh]
∥h∥∞

.

Observe now that we can write

(2.25)

E[fh] =
d∑

ℓ=0

αℓE[fℓh] =
d∑

ℓ=0

αℓ

∑
S⊆{1,...,n}

|S|=ℓ

ĥ(S) =
d∑

ℓ=0

αℓRadℓ h(1, . . . , 1).

Thus, by Figiel’s bound (2.11),

(2.26) E[fh] ≤
d∑

ℓ=0

|αℓ| ∥Radℓh∥∞ ≤
d∑

ℓ=0

|αℓ| |c̃(k, ℓ)| ∥h∥∞

and the desired inequality follows from (2.24).

Equipped with Theorem 1.4, we present the proof of Corollary 1.5.

Proof of Corollary 1.5. The upper bound in (1.16) follows immediately
from Theorem 1.4. For the lower bound, consider the auxiliary symmetric
function Hk,n : {−1, 1}n → R given by

(2.27) ∀x∈{−1, 1}n, Hk,n(x):=Tk

(
x1+ · · ·+xn

n

)
=

k∑
ℓ=0

βℓ,k,nfℓ(x),

where fℓ is the ℓth elementary symmetric polynomial, and notice that Hk,n

has degree at most k. As Tk(x) has the same parity as k, it follows that
βℓ,k,n = 0 if k − ℓ is odd. We distinguish two cases depending on the parity
of k − d.

• Suppose that k−d is even and consider the function φd,k,n :{−1, 1}n→R
given by

(2.28) ∀x ∈ {−1, 1}n, φd,k,n(x) :=
∑

0≤ℓ≤d: 2|d−ℓ

sign(βℓ,k,n)fℓ(x),

that is also symmetric and of degree at most d. Then on the one hand we
know that

(2.29) inf
g∈Pn

>k

∥φd,k,n − g∥1
(1.15)

≤
∑

0≤ℓ≤d: 2|d−ℓ

|c̃(k, ℓ)| =
∑

0≤ℓ≤d: 2|d−ℓ

|c(k, ℓ)|.
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On the other hand, we have the following lower estimate:

(2.30) inf
g∈Pn

>k

∥φd,k,n − g∥1
(2.24)
= sup

0̸=h∈Pn
≤k

E[φd,k,nh]

∥h∥∞
≥

|E[φd,k,nHk,n]|
∥Hk,n∥∞

.

By definition, ∥Hk,n∥∞≤supx∈[−1,1] |Tk(x)|≤1 andHk,n(1, . . . , 1)=Tk(1)=1.
Therefore,

(2.31) inf
g∈Pn

>k

∥φd,k,n − g∥1 ≥ |E[φd,k,nHk,n]|

=
∣∣∣ ∑
0≤ℓ≤d: 2|d−ℓ

sign(βℓ,k,n)RadℓHk,n(1, . . . , 1)
∣∣∣

=
∑

0≤ℓ≤d: 2|d−ℓ

|RadℓHk,n(1, . . . , 1)| .

To further estimate this sum, we use [14, Lemma 27], which implies that
there exists a positive constant εn(k, d) > 0, with εn(k, d) = Ok,d(1/n) as
n → ∞, such that

(2.32)
∑

0≤ℓ≤d: 2|d−ℓ

|RadℓHk,n(1, . . . , 1)| ≥
∑

0≤ℓ≤d: 2|d−ℓ

|c(k, ℓ)| − εn(k, d).

Hence, combining the above we conclude that

(2.33) inf
g∈Pn

>k

∥φd,k,n − g∥1 ≥
∑

0≤ℓ≤d: 2|d−ℓ

|c(k, ℓ)| − εn(k, d).

Finally, to bound from below the L1-distance of fd from the tail space, we
write (putting φ0,k,n = φ−1,k,n ≡ 0)

(2.34) fd = sign(βd,k,n)(φd,k,n − φd−2,k,n)

and using the triangle inequality, we get
(2.35)
inf

g∈Pn
>k

∥fd−g∥1 ≥ inf
g∈Pn

>k

∥φd,k,n − g∥1 − inf
g∈Pn

>k

∥φd−2,k,n − g∥1
(2.29)∧(2.33)

≥
∑

0≤ℓ≤d: 2|d−ℓ

|c(k, ℓ)|−εn(k, d)−
∑

0≤ℓ≤d−2: 2|d−2−ℓ

|c(k, ℓ)|

= |c(k, d)| − εn(k, d),

thus concluding the proof of the lower bound in (1.16).

• If k−d is odd, we use the identity (putting φ0,k,n=φ−1,k,n=φd,−1,n≡0)

(2.36) fd = sign(βd,k−1,n)(φd,k−1,n − φd−2,k−1,n).

The rest of the argument is identical.

Remark 2.6. In this paper, we studied dual versions of moment com-
parison estimates on the hypercube (1.3) and investigated the endpoint case
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of their duals (1.4) for polynomials. By formal reasoning similar to the proof
of Proposition 1.1, one can derive dual versions of various other polynomial
inequalities, including Bernstein–Markov inequalities and their reverses and
bounds for the action of the heat semigroup. We refer to [8] for a systematic
treatment of such estimates.

Acknowledgements. We are grateful to Krzysztof Oleszkiewicz for valu-
able discussions. H. Z. is grateful to Institut de Mathématiques de Jussieu
for the hospitality during a visit in 2023.

This material is based upon work supported by the NSF grant DMS-
1929284 while the authors were in residence at ICERM for the Harmonic
Analysis and Convexity program.

References

[1] J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Grundlehren Math.
Wiss. 223, Springer, Berlin, 1976.

[2] R. Blei, Analysis in Integer and Fractional Dimensions, Cambridge Stud. Adv. Math.
71, Cambridge Univ. Press, Cambridge, 2001.

[3] A. Bonami, Étude des coefficients de Fourier des fonctions de Lp(G), Ann. Inst.
Fourier (Grenoble) 20 (1970), 335–402.

[4] J. Bourgain, Walsh subspaces of Lp-product spaces, in: Seminar on Functional Anal-
ysis, 1979–1980, exp. 4A, 9 pp., École Polytech., Palaiseau, 1980.

[5] A. Defant, D. García, M. Maestre, and P. Sevilla-Peris, Dirichlet Series and Holo-
morphic Functions in High Dimensions, New Math. Monogr. 37, Cambridge Univ.
Press, Cambridge, 2019.

[6] A. Defant, M. Mastyło, and A. Pérez, On the Fourier spectrum of functions on
Boolean cubes, Math. Ann. 374 (2019), 653–680.

[7] A. Defant and P. Sevilla-Peris, The Bohnenblust–Hille cycle of ideas from a modern
point of view, Funct. Approx. Comment. Math. 50 (2014), 55–127.

[8] A. Eskenazis and P. Ivanisvili, Polynomial inequalities on the Hamming cube, Probab.
Theory Related Fields 178 (2020), 235–287.

[9] A. Eskenazis and P. Ivanisvili, Learning low-degree functions from a logarithmic num-
ber of random queries, in: STOC ’22—Proceedings of the 54th Annual ACM SIGACT
Symposium on Theory of Computing, ACM, New York, 2022, 203–207.

[10] P. Hitczenko, Domination inequality for martingale transforms of a Rademacher se-
quence, Israel J. Math. 84 (1993), 161–178.

[11] P. Hitczenko and S. Kwapień, On the Rademacher series, in: Probability in Banach
Spaces, 9 (Sandjberg, 1993), Progr. Probab. 35, Birkhäuser Boston, Boston, MA,
1994, 31–36.

[12] T. Holmstedt, Interpolation of quasi-normed spaces, Math. Scand. 26 (1970), 177–199.
[13] P. Ivanisvili and T. Tkocz, Comparison of moments of Rademacher chaoses, Ark.

Mat. 57 (2019), 121–128.
[14] S. Iyer, A. Rao, V. Reis, T. Rothvoss, and A. Yehudayoff, Tight bounds on the Fourier

growth of bounded functions on the hypercube, arXiv:2107.06309 (2021).
[15] A. Khintchine, Über dyadische Brüche, Math. Z. 18 (1923), 109–116.

http://dx.doi.org/10.1007/978-3-642-66451-9_5
http://dx.doi.org/10.1007/s00208-018-1756-y
http://dx.doi.org/10.7169/facm/2014.50.1.2
http://dx.doi.org/10.1007/s00440-020-00973-y
http://dx.doi.org/10.1007/BF02761698
http://dx.doi.org/10.7146/math.scand.a-10976
http://dx.doi.org/10.4310/ARKIV.2019.v57.n1.a7
http://arxiv.org/abs/2107.06309


12 A. Eskenazis and H. Zhang

[16] N. Levhari and A. Samorodnitsky, Hypercontractive inequalities for the second norm
of highly concentrated functions, and Mrs. Gerber’s-type inequalities for the second
Rényi entropy, Entropy 24 (2022), art. 1376, 27 pp.

[17] S. J. Montgomery-Smith, The distribution of Rademacher sums, Proc. Amer. Math.
Soc. 109 (1990), 517–522.

[18] R. O’Donnell, Analysis of Boolean Functions, Cambridge Univ. Press, New York,
2014.

[19] K. Oleszkiewicz, On mimicking Rademacher sums in tail spaces, in: Geometric As-
pects of Functional Analysis, Lecture Notes in Math. 2169, Springer, Cham, 2017,
331–337.

Alexandros Eskenazis
CNRS, Institut de Mathématiques de Jussieu
Sorbonne Université
Paris, Fance
and
Trinity College
University of Cambridge
Cambridge, UK
E-mail: alexandros.eskenazis@imj-prg.fr

ae466@cam.ac.uk

Haonan Zhang
Department of Mathematics
University of South Carolina

Columbia, SC 29208, USA
E-mail: haonanzhangmath@gmail.com

haonanz@mailbox.sc.edu

http://dx.doi.org/10.3390/e24101376
http://dx.doi.org/10.1090/S0002-9939-1990-1013975-0
http://dx.doi.org/10.1017/CBO9781139814782

	1. Introduction
	2. Proofs
	References

