Tate sequences and lower bounds for ranks of class groups

Tom 160 / 2013

Cornelius Greither Acta Arithmetica 160 (2013), 55-66 MSC: Primary 11R29. DOI: 10.4064/aa160-1-4

Streszczenie

Tate sequences play a major role in modern algebraic number theory. The extension class of a Tate sequence is a very subtle invariant which comes from class field theory and is hard to grasp. In this short paper we demonstrate that one can extract information from a Tate sequence without knowing the extension class in two particular situations. For certain totally real fields $K$ we will find lower bounds for the rank of the $\ell $-part of the class group ${\rm Cl}(K)$, and for certain CM fields we will find lower bounds for the minus part of the $\ell $-part of the class group. These results reprove and partly generalise earlier results by Cornell and Rosen, and by R. Kučera and the author. The methods are purely algebraic, involving a little cohomology.

Autorzy

  • Cornelius GreitherFakultät Informatik
    Universität der Bundeswehr München
    85577 Neubiberg, Germany
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek