Bornes optimales pour la différence entre la hauteur de Weil et la hauteur de Néron–Tate sur les courbes elliptiques sur $\overline{\mathbb{Q}}$

Tom 160 / 2013

Peter Bruin Acta Arithmetica 160 (2013), 385-397 MSC: 11G05, 11G50, 11Y35. DOI: 10.4064/aa160-4-5

Streszczenie

We give an algorithm that, for an elliptic curve $E$ over $\overline{\mathbb Q}$ in Weierstraß form, computes the infimum and supremum of the difference between the naïve and canonical height functions on $E(\overline{\mathbb Q})$.

Autorzy

  • Peter BruinInstitut für Mathematik
    Universität Zürich
    Winterthurerstrasse 190
    CH-8057 Zürich, Schweiz
    and
    Mathematics Institute
    Zeeman Building
    University of Warwick
    Coventry CV4 7AL
    United Kingdom
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek