JEDNOSTKA NAUKOWA KATEGORII A+

# Wydawnictwa / Czasopisma IMPAN / Acta Arithmetica / Wszystkie zeszyty

## Characterization of the torsion of the Jacobians of two families of hyperelliptic curves

### Tom 161 / 2013

Acta Arithmetica 161 (2013), 201-218 MSC: Primary 11G10, 11G30; Secondary 11G20, 11L10. DOI: 10.4064/aa161-3-1

#### Streszczenie

Consider the families of curves $C^{n,A}:y^{2}=x^{n}+Ax$ and $C_{n,A}:y^{2}=x^{n}+A$ where $A$ is a nonzero rational. Let $J^{n,A}$ and $J_{n,A}$ denote their respective Jacobian varieties. The torsion points of $C^{3,A}( \mathbb {Q})$ and $C_{3,A}( \mathbb {Q})$ are well known. We show that for any nonzero rational $A$ the torsion subgroup of $J^{7,A}( \mathbb {Q})$ is a 2-group, and for $A\not =4a^{4},-1728,-1259712$ this subgroup is equal to $J^{7,A}( \mathbb {Q}) [ 2]$ (for a excluded values of $A$, with the possible exception of $A=-1728$, this group has a point of order 4). This is a variant of the corresponding results for $J^{3,A}$ ($A\not =4$) and $J^{5,A}$. We also almost completely determine the $\mathbb {Q}$-rational torsion of $J_{p,A}$ for all odd primes $p$, and all $A\in \mathbb {Q}\setminus \{ 0\}$. We discuss the excluded case (i.e. $A\in ( -1) ^{( p-1) /2}p\mathbb {N}^{2}$).

#### Autorzy

• Tomasz JędrzejakInstitute of Mathematics
University of Szczecin
Wielkopolska 15
70-451 Szczecin, Poland
e-mail

## Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

## Przepisz kod z obrazka Odśwież obrazek