Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Characterization of the torsion of the Jacobians of two families of hyperelliptic curves

Tom 161 / 2013

Tomasz Jędrzejak Acta Arithmetica 161 (2013), 201-218 MSC: Primary 11G10, 11G30; Secondary 11G20, 11L10. DOI: 10.4064/aa161-3-1

Streszczenie

Consider the families of curves $C^{n,A}:y^{2}=x^{n}+Ax$ and $C_{n,A}:y^{2}=x^{n}+A$ where $A$ is a nonzero rational. Let $J^{n,A}$ and $J_{n,A}$ denote their respective Jacobian varieties. The torsion points of $C^{3,A}( \mathbb {Q}) $ and $C_{3,A}( \mathbb {Q}) $ are well known. We show that for any nonzero rational $A$ the torsion subgroup of $J^{7,A}( \mathbb {Q}) $ is a 2-group, and for $A\not =4a^{4},-1728,-1259712$ this subgroup is equal to $J^{7,A}( \mathbb {Q}) [ 2] $ (for a excluded values of $A$, with the possible exception of $A=-1728$, this group has a point of order 4). This is a variant of the corresponding results for $J^{3,A}$ ($A\not =4$) and $J^{5,A}$. We also almost completely determine the $\mathbb {Q}$-rational torsion of $J_{p,A}$ for all odd primes $p$, and all $A\in \mathbb {Q}\setminus \{ 0\} $. We discuss the excluded case (i.e. $A\in ( -1) ^{( p-1) /2}p\mathbb {N}^{2}$).

Autorzy

  • Tomasz JędrzejakInstitute of Mathematics
    University of Szczecin
    Wielkopolska 15
    70-451 Szczecin, Poland
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek