JEDNOSTKA NAUKOWA KATEGORII A+

# Wydawnictwa / Czasopisma IMPAN / Acta Arithmetica / Wszystkie zeszyty

## A note on ternary purely exponential diophantine equations

### Tom 171 / 2015

Acta Arithmetica 171 (2015), 173-182 MSC: Primary 11D61. DOI: 10.4064/aa171-2-4

#### Streszczenie

Let $a,b,c$ be fixed coprime positive integers with $\min\{a,b,c\}>1$, and let $m=\max \{a,b,c\}$. Using the Gel'fond–Baker method, we prove that all positive integer solutions $(x,y,z)$ of the equation $a^x+b^y=c^z$ satisfy $\max \{x,y,z\}<155000(\log m)^3$. Moreover, using that result, we prove that if $a,b,c$ satisfy certain divisibility conditions and $m$ is large enough, then the equation has at most one solution $(x,y,z)$ with $\min\{x,y,z\}>1$.

#### Autorzy

• Yongzhong HuDepartment of Mathematics
Foshan University
528000 Foshan, Guangdong, P.R. China
e-mail
• Maohua LeInstitute of Mathematics
Lingnan Normal University
524048 Zhanjiang, Guangdong, P.R. China
e-mail

## Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Odśwież obrazek