Artykuły w formacie PDF dostępne są dla subskrybentów, którzy zapłacili za dostęp online, po podpisaniu licencji Licencja użytkownika instytucjonalnego. Czasopisma do 2009 są ogólnodostępne (bezpłatnie).

Points de hauteur bornée sur les hypersurfaces lisses des variétés toriques

Tom 172 / 2016

Teddy Mignot Acta Arithmetica 172 (2016), 1-97 MSC: 11D45, 11D72, 11P55. DOI: 10.4064/aa8050-12-2015 Opublikowany online: 10 December 2015

Streszczenie

We demonstrate the Batyrev–Manin Conjecture for the number of points of bounded height on hypersurfaces of some toric varieties whose rank of the Picard group is 2. The method used is inspired by the one developed by Schindler for the case of hypersurfaces of biprojective spaces and by Blomer and Brüdern for some hypersurfaces of multiprojective spaces. These methods are based on the Hardy–Littlewood circle method. The constant obtained in the final asymptotic formula is the one conjectured by Peyre.

Autorzy

  • Teddy MignotInstitut Fourier, UMR 5582
    UFR de Mathématiques, Université de Grenoble I
    BP 74, 38402 Saint-Martin d’Hères Cedex, France
    e-mail

Przeszukaj wydawnictwa IMPAN

Zbyt krótkie zapytanie. Wpisz co najmniej 4 znaki.

Przepisz kod z obrazka

Odśwież obrazek

Odśwież obrazek